
    Advanced search 

Linux Journal Issue #57/January 1999

Features

DIPC: The Linux Way of Distributed Programming  by Mohsen Sharifi
and Kamran Karimi

This article discusses the main characteristics of Distributed
Inter-Process Communication (DIPC), a relatively simple system
software that provides uses of the Linux operating system with
both the distributed shared memory and the message passing
paradigms of distributed programming.

Transform Methods and Image Compression  by Darrel Hankerson
and Greg A. Harris

An introduction to JPEG and wavelet transform techniques using
Octave and Matlab.

LJ Interviews Kent McNall of Apropos  by Marjorie Richardson
A talk with the head of a company using Informix SE for Linux in
a point-of-sale application almost before it was announced.

1998 Readers' Choice Awards  by Amy Kukuk
You voted, we counted, here are the results.

1998 Editor's Choice Awards  by Marjorie Richardson
A look at the Editor's choices for best products of 1998 and why
she chose them.

News & Articles

Introduction to LyX  by Ulrich Quill
Make working with LaTex easier by using the WYSIWYG editor
LyX.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/2417.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2567.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3157.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3157.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3198.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3199.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355.html


x-automate: Control Your Home with Linux  by Stewart Benedict
Mr. Benedict show us the way to live in the home of the future
by using our computer to control lights and appliances.

A Short History of Women in Technology  by Thomas Connelly
If you think all computer professionals are men think again. Mr.
Connelly tells us about some well-known women in computer
annals.

The Proper Image for Linux  by Randolph Bentson
Dr. Bentson did a survey of Linux kernel developers to find out
about their backgrounds. Here are the results.

Understanding a Context Switching Benchmark  by Randy Appleton
A look at the Linux kernel scheduler.

An Introduction to VRML  by Tuomas Lukka
Getting Started with Quake  by Bob Zimbinski
First Canadian National Linux Installfest  by Dean Staff

Reviews

VariCAD Version 6.2-0.3  by Bradley Willson
SciTech Display Doctor 1.0  by James Youngman
PartitionMagic 4.0: A Linux User's Perspective  by Roderick Smith

Columns

Take Command   Calendar Programs  by Michael Stutz
Mr. Stutz introduces us to a digital method for keeping track of
appointments and those important dates in our lives.

Linux Means Business   Linux as a PACS Server for Nuclear
Medicine  by Cheng-Ta Wu

Linux is being used in a Taiwan hospital as a server for medical
images and as a firewall.

System Administration   Caching the Web, Part 1  by David
Guerrero

Improve your users' browsing and save your bandwidth by using
proxy servers to cache web pages.

Kernel Korner   Linux for Macintosh 68K Port  by Alan Cox
“I don't care if space aliens ate my mouse” or a case study in
both the technical and human issues in porting the Linux OS to
a new M68K target platform.

At the Forge   Creating a Web-based BBS, Part 1  by Reuven M.
Lerner

Ready to create your own virtual community? Here's how to
begin.

Departments

Letters to the Editor  
Stop the Presses  by Norman M. Jacobowitz

1998 Atlanta Linux Showcase
New Products  
Best of Technical Support  

https://secure2.linuxjournal.com/ljarchive/LJ/057/2504.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2657.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2931.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3085.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3202.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3182.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3207.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2661.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2935.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2935.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2996.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3193.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3194.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3195.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3196.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3197.html


Strictly On-line

Installation and Configuration of FreeBSD  by Sean Eric Fagan
Here's how to set up a web server using another freely available
operating system, FreeBSD, a high performance, mature, UNIX-
like system.

Supplement

Enterprise Solutions Supplement  

Archive Index 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2515.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/lstoc.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

DIPC: The Linux Way of Distributed Programming

Mohsen Sharifi

Kamran Karimi

Issue #57, January 1999

This article discusses the main characteristics of Distributed Inter-Process
Communication (DIPC), a relatively simple system software that provides users
of the Linux operating system with both the distributed shared memory and
the message passing paradigms of distributed programming. 

Before Linux, powerful UNIX operating systems were considered a luxury. Linux
made it possible for ordinary people to have access to an affordable and
reliable computing platform. The only problem is that Linux was originally
based on decades-old designs (see Resources 7), making it less attractive for
more technically minded users. Linux's answer to this problem is either port
and adaptation or introduction of newer concepts. 

Building multi-computers (see Resources 1) and programming them are among
the more popular research subjects and demand for them is rapidly rising. Any
solution to distributed programming under Linux should keep up with one of
Linux's more important features: availability to ordinary users.

Motivation

Linux already had symmetric multi-processing capabilities. However, it did not
provide enough standard facilities for distributed software development.
Programmers and users had to resort to different add-on packages and various
programming models to write or use distributed software. The mechanisms
provided by these packages usually differed greatly from one another, each
requiring users to learn some new material which was not of any use to them
when migrating to other methods. Many also required detailed involvement of
the programmer in the process of transferring data over the network; an
example is the PVM (Parallel Virtual Machine) software (see Resources 8). The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


need for a simpler distributed programming model, usable by more
programmers, was obvious.

What is Distributed Programming?

The DIPC Software

DIPC (Distributed Inter-Process Communication) is a software-only solution for
enabling people to build and program multiple computers easily. Each node
can be an ordinary personal computer. These nodes must be connected to
each other by a TCP/IP (see Resources 3) network. It does not use network
broadcasting, which helps it work in networks without such capabilities. Also,
no assumption of a synchronized clock is made. These features mean that DIPC
could be used in a wide area network (WAN).

Right from the start, it was decided that ease of application programming and
the simplicity of the DIPC itself should be among the most important factors in
the system design, even if it were to mean some loss in performance. This
decision was backed by the observation that computing and
telecommunications equipment speeds are improving rapidly, while training
and programming times for distributed applications are not.

In DIPC, UNIX System V IPC mechanisms (see Resources 4), consisting of
semaphores, messages and shared memories, are modified to function in a
network environment. This means that installing DIPC requires changing and
recompiling the kernel. Here, the same system calls used to provide
communication between processes running on the same computer can be
used to allow the communication of processes running on different machines.
There is no new system call for the application programmer's use. There is also
no library to be linked to the application code, and no need for any
modifications in compilers. DIPC could be used with any language that allows
access to the operating system's system calls. It is completely camouflaged in
the kernel.

The result is that DIPC supports both the message passing and the distributed
shared memory paradigms of distributed programming, providing more
options for the application programmer (see Resources 5). It also allows the
processes to share only selected parts of their address space in order to reduce
the problems of false sharing.

It was decided to implement DIPC in the user space as much as possible, with
minimal changes to the kernel. This leads to a cleaner and simpler design, but
in a monolithic operating system such as Linux it has the drawback of requiring
frequent copy operations between kernel and user address spaces (see

https://secure2.linuxjournal.com/ljarchive/LJ/057/2417s4.html


Resources 2). As UNIX does not allow user space processes to access and
change kernel data structures at will, DIPC must have two parts. The more
important part is a program named dipcd, which runs with superuser
privileges; dipcd forks several processes to do its work. The other part is inside
the kernel giving dipcd work and letting it see and manipulate kernel data. The
two parts use a private system call to exchange data. This system call must not
be used by other processes in the system.

DIPC provides easy data transfer over the network and assumes that the code
to use these data already resides at the suitable places. This is justifiable when
one considers that in most cases, the program's code changes much less
frequently than the data.

About the Example Distributed Program

Listing 1. Example Distributed Program

DIPC is only concerned with providing mechanisms for distributed
programming. The policies, e.g., how a program is parallelized, or where an
application program's processes should run, are determined by the
programmer or the end user.

DIPC Clusters

DIPC enables the creation of clusters of PCs. Computers in the same cluster
could work together to solve a problem. DIPC's clusters are logical entities,
meaning they are independent of any physical network characteristics.
Computers could be added or deleted from a cluster without the need to
change any of the network parameters. Several clusters may exist in the same
physical network, but each computer can belong to at most one of them.
Computers on the same cluster can even be connected to each other by a
WAN. As far as DIPC is concerned, computers in one cluster never interact with
computers in other clusters.

In normal System V IPC, processes specify numerical keys to gain access to the
same IPC structure (see Resources 4). They can then use these structures to
communicate with each other. A key normally has a unique meaning in only
one computer. DIPC makes the IPC keys globally known. Here, if the application
programmer wishes, a key can have the same meaning in more than one
machine. Processes on different computers can communicate with each other
the same way they did in a single machine.

Information about all the IPC keys in use is kept by one of dipcd's processes
called the referee. Each cluster has only one referee. In fact, it is having the

https://secure2.linuxjournal.com/ljarchive/LJ/057/2417s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2417l1.html


same referee that places computers in the same cluster. All other processes in
the cluster refer to this one to find out if a key is in use. The referee is DIPC's
name server. Besides many other duties, the referee also makes sure that only
one computer at a time will attempt to create an IPC structure with a given key
value, hence the name. Using a central entity simplifies the design and
implementation but can become a bottleneck in large configurations. Finding a
remedy to this problem is left to the time when DIPC is actually running in such
configurations.

Users may need to run some programs (e.g., utilities) in all the computers in the
system at the same time, and these programs may need to use the same IPC
keys. This could create interference. To prevent any unwanted interactions,
distributed IPC structures are declared by programmers. The programmer
must specify a flag to do this. The structures are local by default. The
mentioned flag is the only thing the programmer should do to create a
distributed program. The rest is like ordinary System V IPC programming. Other
than this flag to keep DIPC compatible with older programs, the system is
totally transparent to programmers.

DIPC Programs

DIPC's programming model is simple and quite similar to using ordinary System
V IPC. First, a process creates and initializes the needed IPC structures. After
that, other processes are started to collaborate on the job. All of them can
access the same IPC structures and exchange data. These processes are usually
executing in remote machines, but they could also be running on the same
computer, meaning distributed programs can be written on a single machine
and later run on real multi-computers.

An important point about DIPC is that no other UNIX facility is changed to work
in a distributed environment. Thus, programmers cannot use system calls, such
as fork, which create a process in the local computer.

The fact that DIPC programs use numerical keys to transfer data means they do
not need to know where the corresponding IPC structures are located. DIPC
makes sure that processes find the needed resources just by using the
specified keys. The resources could be located in different computers during
different runs of a distributed program. This logical addressing of resources
makes the programs independent of any physical network characteristics.

Simple techniques allow the mapping from logical computing resources needed
by a program to physical resources to be done with no need to remake the
program. As DIPC programs do not need to use any physical network
addresses, they do not need recompiling to run in new environments. Of
course, this does not prevent the programmer from choosing to make his



program dependent on some physical system characteristics. For example, he
could hard code a computer address in his code. DIPC programmers are
discouraged from doing this type of coding.

When dipcd is not running, the kernel parts of DIPC are short circuited, causing
the system to behave like a normal Linux operating system. As a result, users
can easily disable the distributed system. Also, normal Linux kernels are not
affected by DIPC programs, meaning there is no need to change and recompile
these programs when they are to be executed in single computers with no DIPC
support.

DIPC's Distributed Shared Memory

Distributed Shared Memory (DSM) (see Resources 6) in DIPC uses a multiple-
readers/single-writer protocol. DIPC replicates the contents of the shared
memory in each computer with reader processes so they can work in parallel,
but there can be only one computer with processes that write to a shared
memory. The strict consistency model is used here, meaning that a read will
return the most recently written value. It also means there is no need for the
programmer to do any special synchronization activity when accessing a
distributed shared memory segment. The major disadvantage with this scheme
is a possible loss of performance in comparison to other DSM consistency
models.

DIPC can be configured to provide a segment-based or page-based DSM. In the
first case, DIPC transfers the entire contents of the shared memory from
computer to computer, with no regard as to whether all data will be used. This
could reduce the data transfer administration time. In the page-based mode,
4KB pages are transferred as needed, making possible multiple parallel writes
to different pages.

In DIPC, each computer is allowed to access the shared memory for at least a
configurable time quantum. This lessens the chance of the shared memory
being transferred frequently over the network, which could result in bad
performance.

Error Detection in DIPC

DIPC assumes a fail-stop (see Resources 9) distributed environment, so it
employs time-outs to find out about any problem. The at-most-once semantics
(see Resources 1) is used here, meaning DIPC tries everything just once. In case
of error, it simply informs the relevant processes, either by a system call return
value or, for shared memory read/writes, by a signal. DIPC itself does not do
anything to overcome the problem. The user processes should decide how to
deal with the error. This is normal behavior in many other cases in UNIX .



Security in DIPC

It is important to provide some means to make sure that the data are accessed
only by people with proper permissions. DIPC uses login names, not user IDs,
to identify users. Remote operations are performed after assuming the identity
of the person who executed the system call originally. For this to work, one
login name on all computers in a DIPC cluster should denote the same person.

In order to prevent intrusion to DIPC clusters, addresses of the computers
allowed to take part in a cluster should be put in a file for DIPC to consult.

Current Status of DIPC

DIPC is under development mainly in the Iran University of Science and
Technology's (IUST) Department of Computer Engineering, but people from
different parts of the world are currently working on it. A port to Linux for
Motorola 680x0 processors has been completed. This made DIPC a
heterogeneous system, as the two versions can communicate with each other.
DIPC's sources and related documents can be found on the Internet via
anonymous FTP at sunsite.unc.edu, in /pub/Linux/system/network/distrib/, or
can be downloaded from DIPC's web page at http://wallybox.cei.net/dipc/.

Call for Cooperation

DIPC belongs to the Linux users community, and the ultimate goal is to make it
an integral part of the Linux operating system. Considering the inadequacy of
computing and informational facilities in IUST, the only way to make sure this
software will survive is for interested people to join in its development.

To subscribe to DIPC's mailing list, send e-mail to majordomo@wallybox.cei.net
with the body containing “subscribe linux-dipc”. Postings should go to linux-
dipc@wallybox.cei.net.

Conclusion

DIPC is a simple distributed system that works by bringing new functionality to
an IPC system designed decades ago. Many of the DIPC's nicer features are the
result of its being hidden inside the kernel. Considering its main characteristics,
DIPC has the potential to introduce ordinary programmers to distributed
programming, thus making Linux one of the first operating systems with usable
and really used distributed programming facilities.

Several experimental distributed systems are available for use. Many of them
have been implemented in universities running UNIX variants on workstations
produced by different manufacturers. The fact that, in most cases, researchers



did not have free access to the underlying operating system's source code has
had a big influence on the design decisions. The availability of source code in
Linux has provided new ways to deal with the problems of distributed
programming. DIPC is an example of what can be done when one has access to
the operating system sources. Some could mention the problems in porting
DIPC to proprietary operating systems with no publicly available source code as
a drawback. However, in our opinion, proprietary operating system vendors
and their users are the ones at a loss here, as they cannot take advantage of
more easy-to-use distributed systems developed by third parties. This
statement does not mean DIPC could not be implemented in other UNIX
variants supporting System V IPC, but implies that the port can only be
attempted by people with access to kernel source code.

Resources

Acknowledgements

Mohsen Sharifi (mshar@vax.ipm.ac.ir) is a lecturer in the Computer Engineering
Department of the Iran University of Science and Technology. He heads a
Linux-based software engineering laboratory. His main interest is the
application of object-oriented methodology to the development of distributed
operating systems. He received his BS, MS and Ph.D. in Computer Science from
the University of Manchester in the United Kingdom. He is a member of the
British Computer Society. 

Kamran Karimi (karimik@un.iust.ac.ir) lives in Tehran. He has a BS in Electrical
Engineering and an MS in Computer Science, both from Iranian universities. He

https://secure2.linuxjournal.com/ljarchive/LJ/057/2417s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2417s3.html
mailto:mshar@vax.ipm.ac.ir
mailto:karimik@un.iust.ac.ir


is a former Amiga programmer and though he had to sell his Amiga 1200 a long
time ago to finance the DIPC project, some of his Amiga programs are still used.
His main research interests are artificial intelligence, operating systems and
programming languages. DIPC was the subject of his master's thesis and
among the first such projects in Iran. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Transform Methods and Image Compression

Greg A. Harris

Darrel Hankerson

Issue #57, January 1999

An introduction to JPEG and wavelet transform techniques using Octave and
Matlab. 

This article has its origins in a data compression course we've been developing
over the past few years at Auburn University. The course is elementary and
begins with the basic (text) compression methods of Shannon and Huffman.
Some of these methods can be appreciated with pencil-and-paper examples;
others, such as images to be modified by compression, need some machine
experimentation. 

Students may choose to present a project as part of their course evaluation.
We've seen various projects, including an amusing example of Huffman-on-a-
hand-calculator, an overview presentation of PNG (Portable Network Graphics)
and a project concerning smoothing in JPEG.

We will introduce the transform techniques of JPEG and wavelets, discuss some
mathematical themes shared by these methods, and illustrate the use of a
high-level linear algebra package in understanding such schemes. The images
were generated using Octave and Matlab, primarily on GNU/Linux (x86) and
Solaris (SPARC), but also on a Macintosh.

Image Compression and Transforms

Data compression methods with zero information loss have been used on
image data for some time. In fact, the popular GIF format uses an LZW scheme
(the basic method used in UNIX compress) to compress 256-color images. PNG
is more sophisticated and capable, using a predictor (or filter) to prepare the
data for a gzip-style compressor. (Greg Roelofs has an introduction to PNG and
some notes on patent questions concerning GIF [see Resources 8].) However,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


applications using high-resolution images with thousands of colors may require
more compression than can be achieved with these lossless methods.

Lossy schemes discard some of the data in order to obtain better compression.
The problem, of course, is deciding just which information is to be
compromised. Loss of information in compressing text is typically
unacceptable, although simple schemes such as elimination of every vowel
from English text may find application somewhere. The situation is different
with images and sound; in those cases, some loss of data may be quite
acceptable, even imperceptible.

In the 1980s, the Joint Photographic Experts Group (JPEG) was formed to
develop standards for still-image compression. The specification includes both
lossless and lossy modes, although the latter is perhaps of the most interest
(and is usually what is meant by “JPEG compression”). G. K. Wallace has a paper
(see Resources 10) discussing the standard in some detail.

The method in lossy JPEG depends on an important mathematical and physical
theme for its compression: local approximation. The JPEG group took this idea
and fine-tuned it with results gained from studies on the human visual system.
The resulting scheme enjoys wide use, in part because it is an open standard
but mostly because it does well on a large class of images, with fairly modest
resource requirements.

JPEG and wavelet schemes fall under the general category of transform
methods. The development of wavelet techniques has taken place more
recently than the classical method in JPEG, and is a consequence of the never-
ending search for “better” basic images.

Roughly speaking, the first step in lossy compression schemes like JPEG and
wavelets is to break down an image into a weighted sequence of simpler, more
basic images. At this stage, the image may be reconstructed exactly from
knowledge of the basic images and their corresponding weights. The
effectiveness of the method depends to a great extent on the choice of the
basic images. Once a set of basic images, or basis, has been chosen, arbitrary
images can be replaced by equivalent collections of weights. A basic image
having a correspondingly large weight is an indication of its characteristic
importance in the overall image. (The assumption here is that the basis images
have been normalized, so that they have the same mathematical size.)

The mathematics behind this process is expressed in the language of linear
algebra. There is considerable mathematical freedom in the choice of basis
images; however, in practice they are usually chosen to exhibit features



intrinsic to the class of images of interest. For example, JPEG chooses basic
images designed to reflect certain classical spatial frequencies.

The process of using a basis to resolve an image into a collection of weights is
called a transform. To simplify things, we'll consider gray-scale images (color is
discussed briefly in the conclusion), which can be represented as mxn arrays of
integers. The range of values isn't important in understanding the
mathematical ideas, although it is common to restrict values to the interval 
[0,255], giving a total of 256 levels of gray. As an example, Figure 3(a) shows an
image containing 256x256 pixels with 145 shades of gray represented.

Mathematically, any basis for the space of mxn gray-scale images must contain
exactly mn images—the number of pixels in an mxn image. Consequently, the
transform of an mxn image will have mn weights. The weights can be
conveniently arranged into an mxn array called the transformed image even
though it isn't a true image at all.

The transformation process, in itself, is certainly not a compression technique
(since the transformed image is the same size as the original), but it can lead to
one. Suppose the basis images can be chosen so that, for a wide class of
images, many of the weights turn out to be small: for a given image, set these
small weights to zero and use the resulting array of modified weights to
represent it. Since the transform of the image has been modified, it can be
used only to approximate the original. How good is the approximation? That
depends on how good the scheme is for throwing out nonzero weights, that is,
on the appropriateness of the basis elements and the number of weights which
can be discarded. JPEG and wavelet methods both employ this type of process
and offer significant compression benefits, often with minimal impact on the
quality of the reproduction. They differ in the choice of basis images, i.e., in the
transform used, and subsequently in the method used to discard small weights.
However, both share the idea of picking a basis that can efficiently represent an
image, often using only a small number of its basic images.

The Cosine Transform and JPEG

In this section, several examples using the cosine transform are presented. This
transform is used by JPEG, applied to 8x8 portions of an image. An NxN cosine
transform exists for every N, which exchanges spatial information for
frequency information. For the case N=4, a given 4x4 portion of an image can
be written as a linear combination of the 16 basis images which appear in
Figure 1(a).



The transform provides the coefficients in the linear combination, allowing
approximations or adjustments to the original image based on frequency
content. One possibility is simply to eliminate certain frequencies, obtaining a
kind of partial sum approximation. The implicit assumption in JPEG, for
example, is that the higher-frequency information in an image tends to be of
less importance to the eye.

The images in Figure 1 can be obtained from the scripts supplied on our web
site (see Resources 4) as follows. We'll use “>” to denote the prompt printed by
Matlab or Octave, but this will vary by platform.

Define the test image:

> x = round(rand(4)*50) % 4x4 random matrix,
                       % integer entries in
[0,50]

This will display some (random) matrix, perhaps

    | 10 20 10 41 |
    | 40 30 2  12 |
    | 20 35 20 15 |

and we can view this “image” with the instructions:

> imagesc(x);      % Matlab users
> imagesc(x, 8);   % Octave users

Something similar to the smaller image at the lower left in Figure 1(b) will be
displayed. (We chose the 4x4 example for clarity; however, the viewer in Octave
may fail to display it properly. In this case, either the image can be padded
before display or a larger image can be chosen.) Now ask for the matrix of
partial sums (the larger image in Figure 1(b)):

> imagesc(psumgrid(x)); % Display the 16 partial
                        % sums



The partial sums are built up from the basis elements in the order shown in the
zigzag sequence above. This path through Figure 1(a) is based on increasing
frequency of the basis elements. Roughly speaking, the artificial image in Figure
1(b) is the worst kind as far as JPEG compression is concerned. Since it is
random, it will likely have significant high-frequency terms. We can see these by
performing the discrete cosine transform:

> Tx = dct(x, 4) % 4
                 % of x

For the example above, this gives the matrix

     | 79.25   9.47  4.75 -11.77 |
     |  6.25 -19.69 -4.25 -11.60 |
     |  5.97   8.02 12.73 -15.64 |

of coefficients used to build the partial sums in Figure 1 from the basis
elements. The top left entry gets special recognition as the DC coefficient,
representing the average gray level; the others are the AC coefficients, AC0,1
through AC3,3.

The terms in the lower right of Tx correspond to the high-frequency portion of
the image. Notice that even in this “worst case”, Figure 1 suggests that a fairly
good image can be obtained without using all 16 terms.

The process of approximation by partial sums is applied to a “real” image in
Figure 2, where 1/4, 1/2 and 3/4 of the 1024 terms for a 32x32 image are
displayed. These can be generated with calls of the form:

> x = getpgm('math4.pgm'); % Get a graymap image
> n = length(x);        % n is the number of rows
                        % in the square image
> y = psum(x, n*n / 2); % y is the partial sum
                        % using 1/2 of the terms
> imagesc(y);           % Display the result

Our approximations retain all of the frequency information corresponding to
terms from the zigzag sequence below some selected threshold value; the
remaining higher-frequency information is discarded. Although this can be
considered a special case of a JPEG-like scheme, JPEG allows more sophisticated
use of the frequency information.



JPEG exploits the idea of local approximation for its compression: 8x8 portions
of the complete image are transformed using the cosine transform, then each
block is quantized by a method which tends to suppress higher-frequency
elements and reduce the number of bits required for each term. To “recover”
the image, a dequantizing step is used, followed by an inverse transform.
(We've ignored the portion of JPEG which does lossless compression on the
output of the quantizer, but this doesn't affect the image quality.) The matrix
operations can be diagrammed as:

  transform    quantize     dequantize     invert
x  ------>  Tx  ----->  QTx  -------> Ty  ---> y

In Octave or Matlab, the individual steps can be written:

> x = getpgm('bird.pgm'); % Get a graymap image
> Tx = dct(x);       % Do the 8
> QTx = quant(Tx);   % Quantize, using standard
                     % 8
> Ty = dequant(QTx); % Dequantize
> y = invdct(Ty);    % Recover the image
> imagesc(y);        % Display the image

To be precise, a rounding procedure should be done on the matrix y. In
addition, we have ignored the zero-shift specified in the standard, which affects
the quantized DC coefficients.

It should be emphasized that we cannot recover the image completely—there
has been loss of information at the quantizing stage. It is illustrative to compare
the matrices x and y, and the difference image x-y for this kind of experiment
appears in Figure 3(f). There is considerable interest in measuring the “loss of
image quality” using some function of these matrices. This is a difficult problem
given the complexity of the human visual system.

The images in Figure 3 were generated at several “quality” levels, using software
from the Independent JPEG Group (see Resources 5). The sizes are given in bits
per pixel (bpp); i.e., the number of bits, on average, required to store each of
the numbers in the matrix representation of the image. The sizes for the GIF
and PNG versions are included for reference. (“Bird” is part of a proposed
collection of standard images at the Waterloo BragZone [see Resources 11] and
has been modified for the purposes of this article.)



A JPEG Enhancement

One troublesome aspect of JPEG-like schemes is the appearance of “blocking
artifacts,” the telltale discontinuities between blocks which often follow
aggressive quantizing. The image on the left in Figure 6 was produced using a
scalar multiple of the suggested luminance quantizer. Clearly visible blocks can
be seen, especially in the “smoother” areas of the image.

JPEG operates on individual 8x8 blocks in the image and processes them
independently. There can be significant loss of detail information within the



individual blocks if the quantizing is aggressive. The cosine transform used in
JPEG has properties which may (indirectly) help smooth the transition between
neighboring blocks; however, the tracks of the block-by-block processing can be
apparent when the blocks are reassembled and the image restored. In this
case, it may be desirable to implement a smoothing scheme as part of the
restoration process. This section considers the back-end smoothing procedure
discussed in the book JPEG Still Image Data Compression Standard (see
Resources 7).

The JPEG decompresser may have only rough estimates about much of the
original frequency information, but it typically has fairly good estimates of the
average level of gray in each original 8x8 block (because of the way quantizers
are chosen). The idea is to use the average gray (DC-coefficient) information of
its nearest neighbors to adjust a given block's (AC-coefficient) frequency
information. Figure 4 illustrates the process with a single “superblock”
consisting of a center 8x8 image and its nearest neighbors. The center block in
the image on the right has been “smoothed” by the influence of its nearest
neighbors (the surrounding eight 8x8 blocks).

The process on a more complicated image is illustrated in Figure 5. Here, the
image is plotted as a surface where, at each pixel (y,x), the height of the surface
represents the gray value. For a given 8x8 block, the 3x3 superblock consisting
of its nearest neighbors contains 3282 total entries. The polynomial

         + a6y2 + a7x + a8y + a9

is fitted by requiring that the average value over each subblock matches the
average gray estimate (this gives nine equations for the unknowns a1,...,a9).
The polynomial defines a surface over the center block, which approximates
the corresponding portion of the original surface. Figure 5 shows a surface in
(a) and its polynomial approximation in (b). 



The JPEG decompresser can perform the transform procedure on a polynomial
approximation, obtaining a set of predictors for the frequency information of
the original image. The original estimates passed by the compressor can be
adjusted using these predictors in the hope of reducing the blocking problem.

In Figure 5, the lowest five frequencies were considered for adjustment by the
predictors: zero values passed by the compressor were replaced by the
predicted values (subject to a certain clamping). The procedure applied to an
aggressively-quantized bird image appears in Figure 6. The deblock.m script
(see Resources 4) performs the smoothing. The following code was used to
generate the right-hand image:

> x = getpgm('bird.pgm'); % Get a graymap image
> Tx = dct(x);       % Do the 8
> QTx = quant(Tx, 4*stdQ); % Quantize, using
                           % 4*luminance
> Ty = dequant(QTx);       % Dequantize
> Tz = deblock(Ty);        % Smooth
> z = invdct(Tz);          % Recover the image
> imagesc(z);              % Display the image



This kind of smoothing scheme is attractive, in part because of its simplicity and
the fact that it can be used as a back-end procedure to JPEG (regardless of
whether the original file was compressed with this in mind). However, JPEG
achieves its rather impressive compression by discarding information. The
smoothing procedure sometimes makes good guesses about the missing data,
but it cannot recover the original information.

A Wavelet Example

Features of a signal we wish to examine can guide us in our quest for the “right”
basis vectors. For example, the cosine transform is an offspring of the Fourier
transform, the development of which was, in a sense, a consequence of the
search for basic frequencies with which periodic signals could be resolved.

The Fourier transform is an indispensable tool in the realm of signal analysis.
When used as a compression device, we might wish it had the additional
capacity of being able to highlight local frequency information—generally, it
doesn't. The weights given by the Fourier expansion of a signal may yield
information about the overall strength of the frequencies, but the information
is global. Even if a weight is substantial, it doesn't normally give us any clue as
to the location of the “time interval” over which the corresponding frequency is
significant.

The interest in and use of wavelet transforms has grown appreciably in recent
years since Ingrid Daubechies (see Resources 1) demonstrated the existence of
continuous (and smoother) wavelets with compact support. They have found
homes as theoretical devices in mathematics and physics and as practical tools
applied to a myriad of areas, including the analysis of surfaces, image editing
and querying and, of course, image compression.

In this section, we present an example using the Haar wavelet, which in one
sense is the simplest of wavelets. The 16 basis elements in Figure 7 form a
basis for the set of 4x4 images. Compare these with the cosine transform
elements in Figure 1. One can begin to see the formation of elements with
localized supports even at this “coarse” resolution level.



The simple (lossy) compression scheme used in the example is not as elaborate
as the quantizing scheme used in JPEG. Basically, we throw away any weight
which is smaller than some selected threshold value. In Figure 8, we have used
this simple scheme on “bird” at several tolerance settings.

Setting a weight to zero in the transformed image is equivalent to eliminating
the corresponding basis array in the expansion of the image. This illustrates a
certain kind of simple-minded partial sum (projection) approach to
compression, similar to the example in Figure 2. Examples of more
sophisticated wavelet schemes can be done with Geoff Davis' Wavelet Image



Compression Construction Kit (see Resources 2). Strang's article (see Resources
9) provides a short, elementary introduction to wavelets.

Conclusion

The discussion of JPEG and wavelets has centered on gray-scale images. Color
images may assign a red, green and blue triple (rgb) to each pixel, although
other choices are possible. Color specified in terms of brightness, hue and
saturation, known as luminance-chrominance representations, may be
desirable from a compression viewpoint, since the human visual system is
more sensitive to errors in the luminance component than in chrominance (see
Resources 7). Given a color representation, JPEG and wavelet schemes can be
applied to each of the three planes.

This article was adapted from a recent book (see Resources 3). More
information, such as details of the smoothing procedure, along with the scripts
and complete documentation may be obtained from our web site (see
Resources 4).

Information on Matlab (for GNU/Linux and other platforms) is available through
http://www.mathworks.com/. Octave is developed by John W. Eaton with
contributions from many folks, and is distributed under the GNU General Public
License. Complete sources and ready-to-run executables for several platforms
are available via anonymous ftp from ftp.che.wisc.edu in the /octave directory.
An introduction to Octave appeared in a previous Linux Journal article (see
Resources 6) and on-line information can be found via http://
www.che.wisc.edu/octave/.

Resources

Greg A. Harris joined the faculty at Auburn University after completing a degree
in mathematics at the University of Nebraska-Lincoln. Along with Darrel
Hankerson and Peter D. Johnson, Jr., he is the author of Introduction to
Information Theory and Data Compression, CRC Press, 1997. The photograph
was taken in Zion National Park during winter 1997. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2567s1.html


Darrel Hankerson joined the faculty at Auburn University after completing a
degree in mathematics at the University of Utah. Along with Greg A. Harris and
Peter D. Johnson, Jr., he is the author of Introduction to Information Theory and
Data Compression, CRC Press, 1997. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

LJ Interviews Kent McNall of Apropos

Marjorie Richardson

Issue #57, January 1999

A talk with the head of a company using Informix SE for Linux in a point-of-sale
application almost before it was announced. 

Phil Hughes, my boss and publisher of Linux Journal, talked to Kent McNall at
the Informix Conference held in Seattle in August. Being impressed with the
fact that Apropos was already using Informix for Linux in their point-of-sale
products on the day of the Informix announcement, Phil suggested I interview
Kent and find out how Apropos came to be using Linux. I “talked” to Kent by e-
mail on September 3. 

Marjorie: Tell us a bit about yourself.

Kent: I am the President of Apropos Retail Management Systems of Lynnwood,
WA. I'm 36 years old, and I've been in the computer industry since age 20, when
(like Bill Gates) I dropped out of college to join the computer revolution. Since
my earliest days in this industry I have gravitated towards multi-user business
solutions on new-generation platforms, primarily UNIX-based. I have also
gravitated towards the retail industry; the first software program I wrote was a
point-of-sale system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


During my career, I've worked with almost every type of PC and PC operating
system: CP/M, MP/M, many flavors of UNIX, Apple II/III/Lisa/Mac, and every
generation of IBM PC (including Junior). I've worked with Novell and Windows
3/3.1/3.11/95/98/NT3.51/NT4.0.

After selling, installing and supporting systems for several companies
throughout the 1980s, I formed Apropos Retail Management Systems in March
of 1989 with my partners Sten Karlsen and Gary Gill. Originally chartered as a
general business systems provider, we transformed the company into a
software development company in 1992, developing enterprise-wide retail
management solutions for small- to mid-sized chain retailers. Our systems
revolve around all the most difficult tasks computers do for us today: wide area
networks, data synchronization and very large databases—all with a
requirement of 100% uptime from our clients.

Marjorie: What event first brought Linux to your attention?

Kent: I have many associates and acquaintances the world over who have met
through the Internet. Linux is extremely popular on the Internet. A friend of
mine from Poland brought it to my attention in 1996 when I was trying to bring
up a web server. He told me about Linux and Apache; I was off and running.

Marjorie: What sort of evaluation procedures helped you decide to use Linux as
the operating system of choice in your business?

Kent: The most important evaluation criteria, to this day, is word of mouth. A lot
of people I know are using Linux in mission-critical, high-uptime environments.
A high percentage of the Internet is running on Linux right now. Our own
evaluation including testing, of course. We were surprised at the degree of “off
the shelf” compatibility that Linux had. We expected to be very limited in the
types of hardware we could use, i.e., controllers, graphics cards, etc. Because
we've always been SCO users, we also needed to have compatibility with SCO
binaries, which the iBCS module provides. Compatibility is the true acid test.

Marjorie: What advantages do you see in using Linux? Disadvantages?

Kent: I admit that my initial focus was on the cost advantages of Linux. The
more I've worked with the product, however, the more I'm impressed by all the
other advantages. Linux is truly compliant with the standards of the industry;
the advantage of being so new is that there is no legacy “baggage” in the
operating system. It was designed to POSIX standards from the outset. It is the
fastest Intel-based UNIX I've ever seen. It is quite reliable. The support is
incredible—despite the fact that the paradigm of support is very different and
takes some getting used to. Most people wouldn't expect 24x7x365 support for



a free software product, but with Linux, you have it. The Linux community is
incredible. The biggest advantage I see to Linux is that it will be a true
alternative to Windows NT on the Intel platform in the future. I don't see any
other operating system currently available that can make that claim—not OS/2,
and SCO is simply off track.

The disadvantage of Linux is in the polish. Some companies are packaging
Linux and doing a good job. The challenge is to keep one of those companies
from becoming dominant and setting us on an SCO-type path of price inflation.
One of the larger players has already tried to put a $400 price tag on a
packaged Linux—BOO! The free, downloadable Linux needs more polish. It also
goes without saying that the software development community must develop
software compatible with Linux and the standards Linux represents.

Marjorie: What do you find most attractive about Linux?

Kent: I guess I'm a rebel—but I like the feeling that I'll have an option other than
Windows NT in five years. After that, it is price—I'm a software developer and
reseller. A free operating system is just the ticket for my customers.

Frankly, I think operating systems should have been free a long time ago. Linux
is blazing the trail in this area, and I hope it brings price pressure on the rest of
the industry. I also very much like the fact that Linux is so rock-solid and
reliable—a true enterprise-class operating system.

Marjorie: How do you think Linux compares with other operating systems?

Kent: As a UNIX compared to other UNIX operating systems on Intel platforms,
Linux is less expensive, faster, more open and more compliant to standards
than any UNIX I know of. It is also less “polished”, as I've said. Linux has a
brighter future than any other UNIX I could name. Linux has a much broader
user-support base than any other UNIX, and it also has more industry support,
particularly on the Internet side. Although hard numbers are not easy to come
by, I think there is little doubt that far more Linux has been deployed in the
past two or three years than any other version of UNIX. Remember, my main
perspective is that of a “greedy” businessman—I can't give you the bit-by-bit
lowdown on technical differences.

As compared to NT, don't get me started. I have found NT to be unreliable with
even relatively small (50MB and less) databases. Linux is totally reliable with
these databases. Linux is fast—I could easily put 30 to 40 users on a Pentium-
based Linux system with a database application. That same box would die an
ugly death after running NT. We rarely reboot a Linux system; we are constantly
rebooting NT systems. Certainly any time a configuration change is made, NT



has to be rebooted. Almost any type of hardware can be dynamically linked to a
Linux system on the fly—it is amazing how often we actually do this. Our Linux
web server has been up for eight months. We rebooted our corporate NT
server 12 times last week (I just looked).

I mentioned before that I'm a rebel—but in reality, every IS professional I've
talked to tells this same story about NT versus UNIX or Linux servers, database
servers and mission-critical applications. It is amazing how powerful Microsoft's
marketing arm is.

I do have to mention the GUI interfaces on Linux; like the operating system and
installation portions of Linux, they are not as polished as the MS Windows
interfaces. I've seen some really nice X implementations for Linux, but it is still
too hard for the average user to get there. This is a part of the polish that needs
to happen with Linux.

Marjorie: What do you think needs to be added to Linux to make it more
attractive to business users?

Kent: Again, we get back to the polish. Installation needs to be as easy (or
easier) than NT, with more automatic sensing of installed components.
Business users need to able to order their servers preconfigured with Linux. I
predict that companies such as Dell and Gateway will be offering this within a
year. Business users need a high level of comfort with support and service
behind their operating system. Linux needs to be invisible as a server operating
system—and this is certainly the case now. Marjorie: Did you or Informix
initiate the idea of a Linux port? If it was you, how did you go about convincing
Informix that they needed to port to Linux?

Kent: There had been pressure on Informix for a long time to port to Linux, and
by no means do I take more than one voice's credit for getting Informix to do
an actual port. Much of the pressure came from the International Informix
Users Group and the Informix Users Group; it has been a major topic of
conversation on the Informix newsgroup threads for a very long time. I do
believe that a lot of the pressure on Informix was perceived by Informix
executives as coming from the “hacker” community, which was incorrect—but
let's face it, Linux has been perceived in that light for some time. However, that
is changing. When I started putting pressure on Informix last year, I did turn up
the heat a bit—I bent every ear I could, including Bob Finocchio's in December. I
talked with them about the business case for Linux—I have the competitive
edge when my operating system is free and my competitor is selling a $1200
copy of NT. When I'm trying to sell an Informix/Apropos system to a 200-store
retailer, that's a lot of money. I also tried to convince them that the other major
database players were not asleep and would eventually port to Linux, which



has certainly turned out to be true—but Informix has beaten the competition
by months with their Linux port.

I give Informix all the credit in the world for listening to their customers.
Informix is a great business partner, period. I also applaud the IIUG for their
patience in working with Informix to get this port done—this is their victory. We
are showing support for Informix in the only way it really counts—we've
ordered our first Informix SE licenses for Linux!

Marjorie: Tell us all about your Apropos product. How does it use Informix and
Linux?

Kent: Apropos is an enterprise-wide software system for chain retailers. If you
were a retailer with 150 stores, you would call Apropos for a total solution, from
point-of-sale to your corporate office. Our offering is very unique in that the
entire system is based on a database (Informix), and written in a 4GL language
(Informix Dynamic 4GL). Our product line also includes complete Data
Warehousing, for which we utilize the Informix Metacube product. You can see
that our partnership with Informix is truly a foundation of our business. A new
product we're offering is the Apropos Retail Intranet—retailers absolutely love
this part of the product. Some of our customers are Esprit de Corp of San
Francisco, bebe of San Francisco, Pro Golf Discount and Intrawest, which runs
such resorts as Whistler/Blackcomb, Mammoth Mountain and Mount
Tremblant in Quebec.

The in-store server for a retail store has traditionally been SCO UNIX, running
an Informix SE database engine. We can now install a Linux server at a fraction
of the cost. A typical store will have our POS application running on Informix
and will also use the Netscape Communicator browser for the Apropos
Intranet. With Linux, even a single-station store can have the total reliability of a
Linux-based application with the Netscape graphical interface on the same
station.

Marjorie: What type of business is most likely to need Apropos?

Kent: Chain retail, strictly chain retail. Many of our clients also have e-
commerce sites or mail order, but usually in conjunction with their retail
operations.

Marjorie: Do you support other operating systems with Apropos?

Kent: Yes. We support SCO UNIX, HP/UX, IBM AIX, Windows NT and MS
Windows desktop operating systems. Windows NT will run Informix, and we
currently use it as a file/print server and for a small data warehouse. I would



point out that we have made a significant investment in Windows NT over the
past four years and have two Microsoft-certified professionals and MCSE
candidates on staff, including myself.

Marjorie: Have you considered making Apropos Open Source?

Kent: Our database is already open and always has been, and we freely
distribute the documentation for our data model. There is not a lot of demand
from our client base for our software to be open source.

Marjorie: Have all of your products been ported to Linux? If not, why not?

Kent: All of our products with the exception of the data warehouse have been
ported to Linux. The reason we haven't ported the data warehouse is that
Metacube requires the Informix Online Dynamic Server, which hasn't been
ported yet (hint hint).

Marjorie: What advice would you give others who would like to convince
companies to port their products to Linux?

Kent: Make a case for Linux in a way that business people can understand—
dollars and cents. As the case for Linux builds in the systems community, it will
be easier to gather information that shows the demand for Linux and the
growing user base out there. I believe it is self-evident that the world does not
want to be stuck with one operating system—and it is equally self-evident that
Linux will be a player in the future. Many software companies and their
executives will recognize this fact and respond to it by porting their products
and developing new products that adhere to international open standards.
Linux makes business sense. Sharp business people will see this.

Marjorie: What do you see in the future for Apropos/Linux/Informix?

Kent: At Apropos, we feel we are perfectly positioned for the future. Our
software applications are totally Y2K-compliant; we are built on open systems
standards from start to finish. We believe in our technology and our technology
partners, particularly Informix and the Linux community. We are very close to
our customers, uniquely so—and our customers are very successful
companies. We will continue to build the best retail software in the industry on
the best platforms. We'll continue our commitment to customer service. If you
have good products and are committed to customer service, you are not going
to go wrong. That's why Informix has come through a tough year very well, and
it is why Apropos continues to be successful.

I see a very bright future for Linux. I think the train is just starting to pick up
steam. As Microsoft continues to have problems because of their unfair



business practices, people will start to notice something strange about the old
emperor, at least in the area of enterprise-class operating systems. They'll want
alternatives. System OEM's will want to offer alternatives to their customers.
Software developers will continue to catch the Linux wave. I personally find it
very exciting, and I'm having a lot of fun watching it unfold. The fact that I can
save my customers money and make more money for my business at the same
time is great.

Marjorie: Thank you for your time.

Hot off the Presses

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3157s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

1998 Readers' Choice Awards

Amy Kukuk

Issue #57, January 1999

You voted, we counted, here are the results. 

This year, the number of Readers' Choice awards expands once more to include
28 categories of Linux favorites. The voting took place on the Linux Journal web
site for two months. Over 3000 votes were cast, with over 50% of them from
Germany. This is a small number of votes considering the number of
subscribers we have. Next year, exercise your right to vote and help determine
the winners. 

Each year it is quite a surprise to scan through the results. Go ahead, see for
yourself!

Favorite Audio Application

Winner: RealAudio

Runner Up: Soundstudio

Favorite Backup Utility

Winner: BRU

Runner Up: CTar

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Most Used Linux Book

Winner: Linux Network Administrator's Guide by Olaf Kirch and Andy Oram

Runner Up: Running Linux by Matt Welsh

Best Browser of 1998

Winner: Netscape

Runner Up: Lynx

Most Used Business Application

Winner: StarOffice

Runner Up: Applixware

Favorite LJ Column

Winner: Kernel Korner

Runner Up: Best of Technical Support

Primary Communications Board



Winner: Cyclades

Runner Up: Digi

Most Used Database

Winner: MySQL

Runner Up: PostgreSQL

Best Development Tool

Winner: GCC

Runner Up: XEmacs

Favorite Linux Distribution

Winner: S.u.S.E.

Runner Up: Red Hat

Favorite Editor

Winner: vi

Runner Up: Emacs

Favorite File Manager

Winner: Midnight Commander

Runner Up: xfm



Most Played Linux Game:

Winner: Quake

Runner Up: XTetris

Best Graphics Application

Winner: GIMP

Runner Up: xv

Favorite Programming Language

Winner: Perl

Runner Up: Tcl/Tk

Most Loved Mailer

Winner: Netscape

Runner Up: Pine

Favorite Peripheral

Winner: Ethernet

Runner Up: ISDN

Best System Vendor

Winner: VA Research

Runner Up: Linux Hardware Solutions



Favorite Platform:

Winner: Intel

Runner Up: AMD

Most Used Portable

Winner: Toshiba

Runner Up: IBM

Favorite Security System

Winner: PGP

Runner Up: sshd

Favorite Shell

Winner: Bash

Runner Up: tcsh

Most Loved Special Purpose Tool

Winner: PalmPilot



Runner Up: plan

Best UPS

Winner: APC

Runner Up: Best Power

Favorite Video Tool

Winner: Xanim

Runner Up: RealPlayer

Best Linux Web Page

Winner: slashdot.org

Runner Up: linux.org

Favorite Window Manager

Winner: KDE

Runner Up: Fvwm

Most Used X Server



Winner: XFree86

Runner Up: Accelerated X

More information about the winning products and programs and other Linux
hardware and software is available on our Linux Resources web site at http://
www.linuxresources.com/.

Planning for the 1999 Readers' Choice Awards is already underway. If you have
ideas for new categories, questions or comments, please e-mail
info@linuxjournal.com. Voting for next year's awards will be held in August and
September on the Linux Journal web site, http://www.linuxjournal.com/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Editor's Choice Awards

Marjorie Richardson

Issue #57, January 1999

A look at the Editor's choices for best products of 1998 and why she chose
them. 

When the LJ staff decided to have Editor's Choice Awards this year in addition to
the Readers' Choice, I agreed without truly realizing how difficult it would be to
make decisions. So many fine products that support Linux are available today,
and the number grows daily. This has indeed been a good year for Linux users,
beginning with the announcement that Netscape would become open source
and proceeding through the announcements of support for Linux by all the
major database companies. 

Product of the Year—Netscape Communicator 

I must admit this one wasn't a hard decision. It is my belief that Netscape's
announcement that Communicator would be open source started it all. This
announcement galvanized the world to find out about the Open Source
movement and the Linux operating system that was responsible for its
creation. Linux needed a big company in its corner in order for the word to
spread, and Netscape provided just the initiative that was needed.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Most Promising Software Newcomers—GNOME and KDE

This was probably the most difficult decision, so it ended in a tie. So many new
products are available for Linux this year; finally, the flood of software
applications we have all been waiting for is happening. However, the one thing
everyone has always said Linux needs to become competitive with the
commercial operating systems is a user-friendly desktop—both GNOME and
KDE are filling this need.

Best New Gadget—Schlumberger Smart Card 

While I was given some interesting suggestions for this one, I never had any
doubt that the Smart Card was the proper choice. A credit card with a Linux
CPU on it is just too extraordinary. The computer chip embedded in the card
stores not only mundane information about the card holder, but also biometric
information that can be used for identification—talk about great security! The
suggestion most people gave me was the PalmPilot, which is indeed a cool
product, but even though Linux runs on it, the port was done by programmers
outside 3Com. According to Mr. Bob Ingols, a 3Com staff member, 3Com does
not support Linux and does not plan to.

Best New Hardware—Corel NetWinder 

Corel Computer was the first company to declare Linux as its operating system
of choice and sell computers with Linux pre-installed. With the continuing
growth of Internet popularity, the network computer's day has come and the
NetWinder is one of the best. It is small, powerful and easily configured. Best of
all, it comes with Linux. Debian's recent port to the ARM architecture means
that it too will run on the NetWinder. A close second was the Cobalt Qube
Microserver—not only is it a great little server, it's cute too.

Best New Application—Informix 



Another tough one. My initial choice was the GIMP, but it's been around for
some time (my first thoughts always seem to be free software). At any rate, a
port of a major database to Linux has long been anticipated, and Informix
made the breakthrough with other database companies following suit. With
support from Informix, Linux can now enter the business “big leagues”. A close
second, in my mind, is Corel's WordPerfect 8 for Linux for the same reason—to
be accepted in the workplace, Linux needs this product.

Best New Book—Samba: Integrating UNIX and Windows 

Some might call “foul” on this one, because it is published by SSC. However, this
award is for the book and the author, John Blair, not for the publisher. Samba:
Integrating UNIX and Windows was needed and its popularity has proved it.
John has written a comprehensive book of interest to all who are running multi-
OS shops. The book has been endorsed by the Samba Team, who has gone so
far as to make John a member. If the award had been for “best all-around book
on Linux”, I would have given it to the ever-popular (with good reason) Running
Linux by Matt Welsh, published by O'Reilly & Associates.

Best Business Solution—Linux Print System at Cisco

In our October issue, we had a great article called “Linux Print System at Cisco
Systems, Inc.” by Damian Ivereigh. In it, Damian described how Cisco was using
Linux, Samba and Netatalk to manage approximately 1,600 printers worldwide
in mission-critical environments. He also described how he did it and supplied
the source code he used, so that others could also benefit from this solution—a
wonderful way to contribute to the Linux community.

Most Desired Port—QuarkXPress

Linux Journal uses Linux as its operating system of choice on all but one lone
machine. For layout, we must have an MS Windows 95 machine in order to run
QuarkXPress. Each month we hold our breath during the layout period hoping
that when Windows crashes (it always does), it won't be at a critical juncture.
Crashing for no apparent reason creates extra work for Lydia Kinata, our layout
artist, and much stress for all of us each month. We are more than ready to be
rid of this albatross and have a total Linux shop. Next, like everyone else, we'd
like Adobe to port all its products to Linux.



Marjorie Richardson is Managing Editor of Linux Journal and of the e-zine Linux
Gazette. She had been a scientific applications programmer in the oil industry
for 20 years before coming to SSC. She likes to quilt, read science fiction, watch
action movies and musicals, go to the opera and camp with her husband, Riley.
She can be reached via e-mail at info@linuxjournal.com.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Introduction to LyX

Ulrich Quill

Issue #57, January 1999

Make working with LaTex easier by using the WYSIWYG editor LyX. 

Although (or perhaps because) it is one of the most flexible typesetting tools,
many people are a bit afraid of using LaTeX. They'd rather use a standard word
processor. On the other hand, even for those of us quite accustomed to LaTeX,
some kind of WYSIWYG editor would often come in handy, especially for
shorter texts like letters. 

Out on the Internet is a nice tool which may satisfy the needs of both. It is
called LyX and its home page is http://la1ad.uio.no/lyx/. The primary download
site is ftp://ftp.via.ecp.fr/pub/lyx/, but you can also simply follow the links from
the home page. Initially it was written by Matthias Ettrich (ettrich@kde.org), one
of the initiators of the KDE project, but it is now maintained by Lars Gullik
Bjoennes (larsbj@ifi.uio.no). The most recent package is usually called lyx-
current.tar.gz. For those of you running KDE, it may be interesting to know that
Matthias Ettrich has just released a KDE version of LyX: KLyX (http://www-
pu.informatik.uni-tuebingen.de/users/ettrich/klyx/klyx.html). From the
screenshots it looks very promising, so it may be the version of choice if you
have at least the basic KDE libraries installed.

For the installation of the source package, you will also need two libraries,
which probably won't be included in your system. One is the Xpm library; the
other is XForms, a library for simple XView GUI programming. You will need at
least version 4.7 of libXpm and 0.81 of libforms. Both of them can already be
obtained as Linux (ELF, a.out) binaries. You will find XForms at ftp://
laue.phys.uwm.edu/pub/XFORMS/, ftp://ftp.via.ecp.fr/pub/xforms/ and ftp://
ftp.cs.ruu.nl/pub/xforms/ and Xpm at Sunsite and its mirrors in libs/X/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Installation

I will focus only on the installation of the binary distribution. It is available for
several flavours of UNIX (even for OS/2) and is the easiest to install. Should you
have any problems with the binaries, you can still switch back to compiling the
sources (remembering to check for the other two libraries).

After you have downloaded lyx-current.tar.gz, log in as root and change to /usr/
local. Now do:

tar xzf /
cd share/lyx
./configure

The configure program checks your local LaTeX installation and sets up the LyX
configuration accordingly. Later on, you can view a file (from the Help/
Documentation menu) that lists both the packages installed and not installed in
your system. 

Of course, you do not need to put the LyX package in /usr/local. Nevertheless,
LyX can display its messages in languages other than English. For this feature, it
expects to find the internationalization files in /usr/local/share/locale. If you
install LyX in a different place, you will have to set the environment variable
LYX_LOCALEDIR pointing to the appropriate share/locale directory. If you chose
to install LyX in /opt, then for bash you would need:

LYX_LOCALEDIR=/opt/share/locale

and for tcsh: 

setenv LYX_LOCALEDIR /opt/share/locale

If you don't need the internationalization, i.e., English-only messages are
accessible, you can skip this step. 

Running LyX

Each user can have his/her own resource file in which customizations can be
made. Start by copying the file /usr/local/lyx/system.lyxrc to $HOME/.lyxrc. Now
start LyX by typing lyx.

Figure 1. Welcome Screen

You will be welcomed by a window like the one shown in Figure 1. Looking at
the LyX window, you will be reminded of any standard word processor. That's
the main reason I think users who have been reluctant to use LaTeX will be
encouraged by LyX to make the transition.

https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f1.jpg


At the top is a menu bar with the usual features. Beneath is a button bar with a
list box for choosing the desired style and several command shortcuts. (By the
way, this button bar can be customized.) The window is dominated by a large
text input area with a scrollbar. Finally, at the bottom is a status line.

If you do not wish to experiment on your own but would rather read a little
introduction, choose the menu Help/Documentation. A file selector will open,
letting you choose one of the package's documentation files. The file extension
(*.lyx) shows that LyX uses its own format. However, each document can also
be saved in LaTeX format.

Now back to the documentation. As the program is still in version 0.12, most of
the files are not too detailed, but for a quick start I'd recommend either
Main.lyx or Tutorial.lyx. In this selector you will also find the already mentioned
results of the LaTeX configuration check (LaTeXConfig.lyx).

Let's suppose you selected the file Main.lyx. After confirming the message that
this file is read-only, it takes a little while to load all the fonts into the X-server.
At this point, error messages may appear in your console/shell window. Don't
worry; it just means you have not installed all the X-server fonts LyX wants to
use. Then, you are presented with one of the really nice features: a table of
contents (TOC). A TOC is well-known in LaTeX, but LyX has the ability to display
it in a completely interactive window, i.e., you can click with your mouse on any
entry and the cursor jumps to the appropriate section (see Figure 2). If you
prefer to read instructions on paper, print out the document. Select File/Print,
check that everything in the opening dialog box is set to your needs and click
on OK (or press enter).

Figure 2. LyX Table of Contents

Now let's start to write our first LyX document. Our goal will be a short article
with a title, three sections, some mathematics stuff, perhaps a picture, some
footnotes and a TOC.

First, if you opened Main.lyx before, close the TOC and select File/Close. If LyX
asks you about saving any changes, say no. Now create a new document by
selecting File/New. If you are not in your home directory, change to it by
pressing the Home button. Now, type in a file name, e.g., MyFirstTest.lyx. After
clicking on OK, you are presented with a blank page.

Very well. You (and LyX) are now ready to start typing. First, we create the title.
Click on the down arrow beside “Standard”. A list box will open in which you can
choose one of several styles. (If you know LaTeX, you will recognize most of
them.) Move down and click on “Title”. The layout on the screen will change a

https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f2.jpg


bit and you can type in your title, “My First LyX Document”, then press enter.
Note that the style changes back to “Standard”. This is a characteristic of LyX.
One style is valid within only one paragraph (ended by enter). If you want to
type in more lines, press Newline (ctrl-enter).

To begin the first section, select the “Section” style in the list box to type in the
section name (e.g., “The First Section”) and press enter. To add an itemize style,
type in some text (“A simple itemize style:” enter), and select “Itemize” style—an
asterisk will appear. Now you can write some items which are separated by 
enter. This is an exception to the mentioned rule: to get back to “Standard”
style, you must select this explicitly. You can play around a little with the two
font styles, emphasize and noun, by clicking on the button with the question
mark and the person. The next section will contain some math. After adding a
new section headline, click on the formula button and open the math panel
(Math/Math Panel, MP). First, enter a three-dimensional unity matrix: type E =,
click on the parentheses button in MP and click on OK. Now add the matrix by
clicking on the matrix button in MP (the one with nine squares), set the size (3
by 3) and click on OK. This fills in the nine entries. For a unity matrix, the three
rows should read 1 0 0, 0 1 0 and 0 0 1. If you wish, you can play around a little
with the numerous buttons within the MP.

We will add a third section and insert a PostScript picture into our document.
First, select Insert/Floats/Figure Float and type in any figure caption. After that
(without clicking on enter), click on the “Insert Figure” button (just right of the
formula button). In the dialog, select the first item (encapsulated PostScript). If
you left-click on the appearing frame, a settings box opens. Click on “Browse”
and select the file /usr/local/lyx/clipart/platypus.eps (or change the path
according to your installation). Set the width to 3 inches and click on OK. The
platypus should now appear on the screen. You will notice a red frame around
the complete figure, with a small grey rectangle to the left reading “fig”. If you
press the left button in this field, the whole figure will collapse into a small, red
“fig”. Left-clicking on this brings back the whole frame. Pressing the left button
anywhere within the figure opens the “Floats” context menu, giving you a
choice of actions to perform.

Figure 3. Completed Text Document

By this time, your document should look like Figure 3. Congratulations—you've
just finished your first LyX document. Now save it to disk (File/Save), if you have
not already done so. If you like, print it out (File/Print). This may take a little
time. As you know, LaTeX is still working behind the scenes, which means that
the standard LaTeX procedure of compiling and printing has to be gone
through.

https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/1355f3.jpg


If you followed the opening of the documentation file, you have already seen
LyX's feature of displaying the table of contents (TOC) of a document in a
separate window, letting you jump to each entry by using the mouse. How is
this feature set up and invoked? In fact, you do not have to do anything special.
LyX keeps track of the “Section” style as you assign it to parts of the text.
Choose Edit/Table of Contents, and there it is. You will find all the sections you
created; if not, just press the update button. Clicking on each entry takes your
text cursor directly to the specified point.

More LaTeX Commands and Previewing

With LyX, you can do most any formatting that is possible in LaTeX. Experienced
LaTeX users will notice some LaTeX commands (e.g., \pagebreak) are missing.
This is not really a drawback. You can always assign the TeX style to any portion
of text, either by choosing the style from the list box or by pressing the TeX
button. This tells LyX that the marked portion of text is to be taken as native
LaTeX code, thereby allowing you to use even those LaTeX commands which
cannot be reached by menu entry. Even hard-core LaTeX hackers can still be
satisfied by saving their document in the usual LaTeX format by selecting File/
Make LaTeX file. Although I admit that this file will not necessarily look the way
it would if you had written the text directly in LaTeX, it opens up the possibility
of hacking in anything you like and then running LaTeX directly on the file.

Although LyX is close to WYSIWYG, you might often still like a preview of your
document. For this purpose, LyX offers both xdvi and ghostview. If both these
programs are installed on your system, you can get a preview by selecting one
of these two options from the file menu. The necessary background LaTeX
commands (running LaTeX and, for the PostScript output, dvips) are done by
LyX automatically, so you don't have to worry about whether all your files are
up to date.

If you save text, the file is stored in the working directory you specify. But all the
intermediate LaTeX-related output files (like .log, .dvi, .ps) are stored in a /tmp
directory (the actual path can be specified in ~/.lyxrc), unless you explicitly
instruct LyX to make a LaTeX file from your text.

Now that you have finished your first LyX (and perhaps your first LaTeX)
document, it is time to drop a few notes on the customizations possible within
LyX.

Templates

The first issue (which, in fact, is not really a customization of the application) is
the template, which you may have noticed in the File menu (New from
template...). You may already know the template notion from standard word



processors, and in LyX it works just the same: a standard template document
defining the basic settings like fonts, layout, etc. A prototype of such a template
may be a letter (some letter templates are included in the LyX distribution),
where you would set up basic items like your personal address, a standard
opening and closing phrase and the layout. To create such a template, you
don't have to do anything special—just start editing a new document with the
desired settings. For those parts of the text which are not standard and are to
be changed in each document using this template (an example in the letter
case may be the recipient's address), you can type in any text, e.g., “recipient's
name”. Look at the distribution's templates for other examples. After you finish,
save this template to disk like any other LyX document.

Unlike other word processors, LyX does not use a special format for templates.
Any LyX document can be taken to be a template and vice versa. As a template
is also a “normal” document, saving a newly created template to disk also saves
all the layout options currently selected. So, if you have created a letter
template using a letter-sized sheet of paper, this page size is also saved to disk,
as is all the font information, etc. If you do not want each of your later letters to
use all these settings, you have two options:

1. Leave the template file untouched. In this case, each time you create a
new document using this template, you have to reset the settings to your
specific needs after selecting the template. Remember, selecting a
template is more or less like loading in a file; thus, all the settings saved in
this file overwrite the current parameters.

2. Change the template file by hand using any plain text editor. In this case,
you can remove all the layout commands which you do not wish to be set
by the template.

The more general you wish your template to be, the more likely you will choose
option 2. On the other hand, this requires some knowledge and understanding
of the LyX command language. It won't be too hard if you already know LaTeX,
but for the first experiments you should perhaps leave the file untouched. 

Customization

The last issue to be mentioned here is the ~/.lyx directory which is the place
where real customization can take place. Again, leave the files as they are until
you have become a bit more acquainted with LyX. In this directory, all your
personal configuration files are stored. As long as your configuration and the
global system's are the same, nothing is stored here.

You can, for example, store your preferred key-bindings. There are two
standard bindings (PC-modern and Emacs), but you can also define your own
key-binding scheme and tell LyX the file where it is stored. You can also define



your own tool bar, various (LaTeX-related) commands, printing defaults, file
defaults and the like. It would take quite a while to discuss all these options in
detail, but I recommend taking a look at the file. Fortunately, all options are
explained well, so it is easy to figure out where to do what.

Summary

LyX, a WYSIWYG editor for LaTeX, is by no means a standard word processor. It
heavily depends on LaTeX, i.e., you need to have LaTeX installed properly, and
you can only do formatting that is also possible with LaTeX. It has the distinct
advantage of directly displaying all the different style elements on the screen
without fiddling around with “strange” formatting commands. Those who are
not familiar with LaTeX will find it much easier to take the first step toward
using this powerful package. Those who already know LaTeX will still find LyX
useful for writing shorter pieces of text such as letters. And, after all, as the
LaTeX file format is supported in output, you even have the freedom to hack
the most complex LaTeX commands by hand if necessary.

Ulrich Quill received his diploma in physics from Ruhr-University Bochum,
Germany. His thesis topic was image analysis with neural networks. He is now
in the Ph.D program in the Department of Neurophysiology, working on
biophysically realistic simulations of neural networks. He helps with the system
administration of a SUN/Solaris, PC/Linux cluster. In his spare time, he enjoys
reading, photography and spending time with his girlfriend. He can be reached
at quill@neurop2.ruhr-uni-bochum.de.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

x-automate: Control Your Home with Linux

Stewart Benedict

Issue #57, January 1999

Mr. Benedict show us the way to live in the home of the future by using our
computer to control lights and appliances. 

Ever since I was a kid watching the Jetsons, I've envisioned living in the home of
the future, with intelligent appliances and a central computer controlling the
house, in sync with the occupant's activities. 

Well, we're not quite there yet, but it has been looming on the horizon for some
time. One of the early pioneers in the home automation industry was the X10
protocol. Pico Electronics, a small design house in Glenrothes, Fife, Scotland,
developed the X10 project based on a previous project called X9, which was a
random-access scheme for accessing tracks on an audio tape (much like CD
technology of today). Pico was also responsible for designing some of the first
calculator chips. While the X10 system does have its limitations (some of which
are addressed in recent additions), it is a fairly cheap way to implement home
automation without rewiring your home from scratch.

The X10 system consists of controllers and modules. The controllers send
“power on”/“power off” messages through the existing house wiring to the
controllers, which either throw a relay or use a triac circuit (an electronic circuit
used in light dimming/motor speed control applications) to perform dimming
operations. Each module is set to an address (1-16) and a house code (A-P), and
the controllers are set to a house code. If multiple units are set to the same
address, they can all be controlled by one message. If you need additional
coverage, you divide the facility into zones by house code. X10 modules and
controllers, as well as the CP-290 interface for computer control, can be
purchased from a number of mail order vendors, or from Radio Shack.

One limitation of the X10 systems is one-way communication—no
acknowledgement of the signal being received is returned. Also, the system is
limited in range, sometimes having difficulty getting from one side of the 220V

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


line (split to provide 110V to the home) to the other, in the U.S. anyway. Bridge
modules help with the second problem, and new units are now available that
implement two-way communications (TW-523).

What does all this have to do with Linux? After having played around with Linux
for a while and learning about cron, I started thinking about leaving my
machine on all the time and controlling functions around the house using my
existing X10 gear and the CP-290 interface which I used to plug into my old DOS
box to control the house lights. The CP-290 can download programs and run
the house on its own, but by letting Linux do the job, I get the extra bonus of
letting the system do other tasks such as upload/download my mail, announce
the time of day and give me verbal reminders.

Fortunately, someone else had the same idea. Aaron Hightower
(aaronh@acm.org) wrote x10-amh, a command-line program which
communicates with the CP-290, controlling those items a person might wish to
control around the house.

x10-amh alone is enough to work with cron and do tasks automatically; you just
make the appropriate x10-amh commands in your crontab file, and off you go.
Here's a sample from my crontab file:

55 4 * * mon-fri exec /usr/local/bin/x10 -n 3,4,11
15 5 * * mon-fri exec /usr/local/bin/x10 -f 3,4,11
0 7 * * mon-fri exec /usr/local/bin/x10 -f 10,11,12
0 23 * * sun-thu exec /usr/local/bin/x10 -f 1,4,3,9,6,7
0 9 * * mon-fri exec /usr/local/bin/x10 -f 1,2,3,4,5,6,7,8,9,10,11,12

I'm a frequent participant in Usenet, and one of the groups I follow is
comp.home.automation. If you read this group for any length of time, you see a
plethora of announcements of the latest, greatest home automation software,
with fancy GUIs written for MS Windows. Being an acknowledged Linux
advocate, I started thinking that Linux deserved a fancy home automation GUI
of its own. 

Figure 1. x-automate Interface

x-automate is a Tcl/Tk frontend that works in conjunction with Aaron's x10-
amh. It's fully customizable, with a remote-control-type interface (Figure 1) and
an assortment of icons representing a few typical home-automation candidates
around my home. In addition to the remote control interface, you can set up
floor plans of your home (Figure 2), with the devices placed in a reasonable
representation of their actual locations. Carrying the Jetsons' theme one step
further, I also wrote a C program, speak, that sends ASCII text through another
serial port to a bgmicro Digitalker speech synthesis board which then “says”
what the system is doing. This part is optional. You can configure the system

https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f1.jpg


without sound or implement another approach such as cat xxx.au > /dev/audio

with the appropriate sound file.

Figure 2. Home Floor Plan

The program and its associated files should be stored together in a directory.
(In my case, it's ~/x10.) You'll have to run the program from its directory to pick
up the bitmap files. The configuration for your X10 modules is stored in
~/.x10rc and should look something like the one shown in Listing 1.

Figure 3. Configuration Interface

The program includes a tabular input section for modifying your configuration
(Figure 3). The screen is much like a spreadsheet, with cells to edit the various
parameters for each unit. You need to indicate the floor the unit is on (for
multistory facilities), the x,y coordinates of the icon for the floor plan (you can
fine-tune this once you load the floor plan), the house code and the unit
number. In addition, you need to assign a descriptive phrase for the icon prefix
and the device, whether it is dimmable, and the phrase to speak if you're
configured for sound. You can tab from field to field, as well as insert and
delete rows. Once you're finished, store the setup in your .x10rc file.

There is also a tabular screen for configuring scheduled events which can be
uploaded to the CP290. x10-amh stores event data in the following format:

event {
        devmap 2
        daymap 1,2,3,4,5,6,7
        housecode a
        mode today
        minute 39
        hour 23
        function dim
        dimlevel 5
        }

Figure 4. Events Table 

The table in x-automate simplifies editing this data (Figure 4). In short, you need
to define the device, the days of the week for the event, the housecode, the
mode, the minute, hour, function and dimlevel, if applicable. To upload this
data from the command line, you run x10-amh filename, where filename
contains the schedule data in the above format.

x-automate also has the means for accessing other command-line options of
x10-amh, mostly through the menu. You can set the CP-290's date/time, query
the status of the CP290 and perform a self-test.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504f4.jpg


To create your floor plans, I recommend using xfig, saving or converting the file
to an “xbm” file for displaying within x-automate. Keep in mind your screen size
when designing your floor plan. A separate drawing can be made for each floor
or area, with the file names entered in the .x10rc file. Your control icons will be
displayed at the x,y coordinates as defined in your .x10rc file, and can be used
to control devices in the same way as with “remote control”. Clicking on the
edge of the icon and dragging will move the icon on the floor plan and update
the x,y coordinates in the configuration, which can be resaved to your .x10rc
file. A group of icons in both large and small sizes (for the floor plan) are
included in the distribution. Feel free to make your own—if you make some
nice ones, send them to me. Now, Linux users can have a fancy home-control
GUI, just like that “other” operating system.

Resources

Credits

Stew Benedict has been hacking with computers since 1983. Discovering Linux
about two years ago, he saw the light and is now working as a system
administrator on a mixed UNIX/Microsoft network in a manufacturing facility.
When he's not staring blankly at a CRT, he loves to spend time at home with his
wife, daughter, dog and four birds. He can be reached at stewb@earthlink.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2504s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2504s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

A Short History of Women in Technology

Thomas Connelly

Issue #57, January 1999

If you think all computer professionals are men think again. Mr. Connelly tells
us about some well-known women in computer annals. 

One of the many public debates in Australia at the moment is on the question
of women in the computing industry. For many people, the computer industry
and computers in general are seen to be a domain where big boys play with
toys. Of course, in a society and economy based on the division of labor this
may very well be true, but that is another article. The heads of all the large
companies are men: Bill Gates and Steve Jobs to name but two. However, the
same must be said of almost all companies and institutions in modern society.
The computer industry does not exist in a vacuum; as much as anything else in
our world, it is a plaything of larger forces. 

What of the role of women in computing? From the earliest days of computing
to the writing of the Standard Template Library, women have played an active
and leading role in computer science. The following examples should quickly
prove this statement to be true.

Ada Lovelace

We can start with a question: who was the U.S. Army's programming language
named after? Ada Lovelace, daughter of the English poet Lord Byron. (Rather
ungallantly, Byron left Ada and her mother, Anne Isabella Milburke, when Ada
was one year of age, to seek glory in Greece, where he succumbed to a fever
instead of leading a stirring charge—history can be quite unforgiving.) A
brilliant mathematician, she worked on the analytic engine with Charles
Babbage, devising a method of programming based on the cards used on a
Jaquard loom—a type of input some of us older people can remember from
standardized testing in our school days, or from the Simpsons cartoon, where
Apu wrote a tic-tac-toe game in his university days (before becoming the fifth
Beatle).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


With their combined algebraic skills, the pair set off to the racetrack to apply
logic to horse racing in an attempt to win enough money to build their
machine. This effort resulted in Lady Lovelace having to pawn her jewelry to
keep out of debt—a lesson learned, I am sure. Financial problems aside, the
machine, which was never built in their lifetime, was completed not that many
years ago and did work, just as Ada said it would in her paper “Observations on
Mr. Babbage's Analytical Engine”. Before the project collapsed in a fury of bad
debt, Lady Lovelace wrote a working program to calculate Bernoulli numbers.

In this early moment of computing, a woman was actively involved. Indeed, if it
is true that women have the keener language skills of the two sexes, it would
follow that they would be more than able to contribute to computer science.

Grace Murray Hopper

Skipping a few decades, we come to the attack on Pearl Harbor and the
American entry into World War Two. The epic navy battles of the Pacific Theater
of Operations showed the need to find a way to quickly calculate the flight of a
shell fired from the great eight-inch guns of the USN. The math was simple
enough (maybe not for me, but for others), but in the stress of battle, errors
were not uncommon. A calculator was devised to make the work simpler and
easier. In the pressure of war, expediency won out over ingrained sexist ideas,
and many women were recruited for the projects, which in a few years led to
the birth of the electronic computer.

One of the most significant of these young women was Grace Murray Hopper.
A slight woman, who taught at Vassar before the war and was obsessed with
nanoseconds, she talked the USN into allowing her to volunteer even though
the Navy preferred to have its scientific researchers as civilians. In the Bureau
of Ordnance Computation, she worked on the early computers—vast machines
weighing many tons and needing crews of programmers to work them. Tasks
were performed by plugging wires into the back of the machine. Many of the
wire-plugging programmers were women.

Grace Hopper, later promoted to Rear Admiral, is credited with many
innovations in her field. Among the most important was her first use of the
word bug. A moth once flew into the machine, and was “battered to death” by a
relay. Grace, upon extracting the poor dead insect, taped it into one of her
notebooks and wrote, “The first actual case of a bug being found.” A new
phrase for the source of a hair-tearing error was coined. On a more serious
note, her laziness (one of the virtues of a programmer) led her to develop the
first compiler for the UNIVAC in the mid-fifties. Until then, all coding had been
done in machine code, a time-consuming and often frustrating activity. The
ability to write English words to get the job done was a great advance in



computer science, although it met with strong resistance from engineers at the
time. Grace Hopper learned to loathe the phrase “but this is how we have
always done it.”

The invention of the compiler led directly to her work on the development of
the FORTRAN and COBOL programming languages, which she helped write and
later refined and standardized as a member of the Standards Committee.
COBOL, notwithstanding the success of C, is still the most common language in
use today; more lines of code are produced in COBOL than in any other
language. It is a fitting testimony to her achievement. The invention of the
compiler is one of those things that is easy to take for granted, but for ease of
use and the ability to port code, it is a very powerful tool.

Adele Goldstine

Another woman working during WWII was Adele Goldstine, who in 1946
revamped the ENIAC as a stored program computer, and is responsible for the
quote “It was a son-of-a-bitch to program.” This development of the stored
program allowed the computer to perform a new task without reconfiguring
the entire system. She wrote the manual for the ENIAC as well.

Betty Holberton

At the same time, Betty Holberton was working on the UNIVAC and concerning
herself with human engineering (i.e., user-friendliness). She developed a
language called C-10, which allowed commands to be typed in rather than
having to reset all the wires. Her system used mnemonic characters to input,
for example, “a” for add and “b” for bring. In her work, she initiated the
standard we still use today—the numeric pad next to the keyboard. In spite of
all these efforts, she must be taken to task for her insistence that black was too
intimidating a color for a computer, which resulted in the use of that horrible
beige color for modern computers.

Conclusion

This is a discussion of only a few of the women involved in the development of
the computer; however, many features we take for granted were developed by
these women—the keyboard layout, the compiler, the stored program, the ugly
colors and more.

Finally, two other women should be mentioned: first, the Editor of Linux
Journal, Marjorie Richardson (I've never been one to miss a chance to court
favor), and the author of Essential System Administration, Æleen Frisch. This
text may have been of the most use to me in my vain attempts to conquer
Linux.



More information about women in computer science can readily be found on
the Internet at The Ada Project web site, built by Yale University, http://
www.cs.yale.edu/HTML/YALE/CS/HyPlans/tap/tap.html.

Thomas Connelly lives in Sydney, Australia, with his partner Lyssa Wallace and
his daughter Sofia, where he does market research (boring) to relieve the
tedium fights with his Slackware Linux. He hopefully learns new tricks almost
daily. He can be reached via e-mail at piglet@intercoast.com.au.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Proper Image for Linux

Randolph Bentson

Issue #57, January 1999

Dr. Bentson did a survey of Linux kernel developers to find out about their
backgrounds. Here are the results. 

I get mail from folks about my book, the device driver I wrote for Linux, and
about articles I've written for Linux Journal. A few months ago I got one which
said, in part: 

My boss is a great guy to work for ...[but he] is of the
opinion that Linux is the work of “college punks” and
will not consider it for serious work.

He had a nightmare with the MINIX file system and is
permanently convinced that UNIX simply cannot be
trusted and that Linux is the work of pimply-faced
sophomores with time on their hands. I got a good
laugh out of that while looking at your picture and
reading your bio.

I can only hope his laughter was kindly. The opinions expressed by his boss
weren't the first I've heard of that sort. Nor, I fear, will this be the end of it.
Nonetheless, I decided to take a shot at confronting these claims. 

I had suspicions that Linux contributors are a bright, experienced and well-
educated bunch of folks. The discussions in the various Linux newsgroups and
mailing lists aren't lightweight, nor is the resulting operating system. My “feel”
of the operating system is that it's based on a lot of mature judgments and
there is some theoretical grounding in what's being done.

Credits

I gathered up a list of contributors (from /usr/src/linux/CREDITS) and sent off
241 notes. Partial text of this note is shown in the sidebar, “Letter to
Contributors”. I sent my notes with some trepidation—I didn't want to bother

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/2931s1.html


folks while they were working on important projects, and I feared a lack of
response.

Letter to Contributors

I needn't have worried. So far I've received 103 replies, many of which have
included a few words of encouragement. It seems that I wasn't the only one
who wanted to respond to unjustified complaints about Linux. (Another 29
notes were returned with address errors. I hope to see corrections to the
CREDITS file.)

Education

The level of response was the first piece of good news. The second was that I've
been stunned by how strong the development team is with regards to both
credentials and experience.

From these replies I found:

• 1 had completed just basic public education (high school)
• 15 had attended college or technical school
• 23 had an undergraduate degree (B.S., B.A., etc.)
• 19 had attended graduate school
• 15 had a graduate degree (M.S., M.A., etc.)
• 9 had done further graduate work
• 19 had a terminal degree (Ph.D., M.D., etc.)

That's got to totally demolish the image of college hackers—at least the
sophomore part of it. I figured I was an exception when I started working on
the Cyclades driver while avoiding rewriting my dissertation. I thought, once
folks were awarded a Ph.D., they would be busy with research, teaching or
some other interest. I guess Linux development may be the doctor's favorite
hobby. 

When I offered an earlier summary of these results, my correspondent
reported that his boss wisely intoned, “those folks are all academia and none of
them have ever tried to run a business.”

https://secure2.linuxjournal.com/ljarchive/LJ/057/2931s2.html


Experience

I had sort of expected a comment along those lines and fortunately asked a few
more questions in my survey. One hundred of the replies also reported the
number of years spent programming or doing system design.

• 4 had 1 year
• 10 had 2-4 years
• 31 had 5-9 years
• 40 had 10-20 years
• 16 had 20+ years

More than a few of us were programming before the integrated circuit came
into general use. (Perhaps a mixed blessing—some of us may still suffer from
post-FORTRAN syndrome.) 

As I noted earlier, I have also felt that Linux has benefitted from a broad
experience in its developer base. Linux may be a first operating system for a
lucky few, but almost everyone (all but three) claimed to be at least a skilled
user of another operating system. Eighty-three were skilled users of several
other operating systems.

Nor was their contribution to the Linux kernel the first of that sort. Twenty have
contributed to another operating system and another twenty-two have
contributed to several other operating systems. One reported:

Speaking for myself, I had the same idea Linus did, but
he beat me to it. (I've heard others say this as well.) I
knew how to build a UNIX-like system from the ground
up, and there was a need for it for PCs. (Vendors were
charging exorbitant amounts for poor products in
those days, and there was no good 32-bit
development system for 386s.) I just didn't have the
time. I had been playing with MINIX when Linus
showed up on the MINIX newsgroups, and it took off
from there. I can tell you that though I was a student at
the time, I'd been a professional systems programmer
for many years before. So, I and many others knew
what professional quality software was, as well as how
to produce it. I think it turned out pretty well.

Current Use

Finally, I wanted to know if the contributors were “doing Linux” in their careers.
Eighty-two said their current employment was based on their computer skills. It
was interesting to note that over a third reported their current employment
supported or relied on their Linux development efforts. Sadly, two reported



they were currently unemployed, but one of those also noted that he was
“voluntarily unemployed to have time to put my life in better order.”

Perhaps one significant difference between Linux development and academic
or commercial development is the duration of personal interest. In an
academic setting, a student typically has one term, or at most one year, to work
on any given program. When programmers leave a company, support is picked
up by someone who has no sense of what has gone before. There is greater
continuity in the Linux community because of the nature of submission and
distribution. No matter what is happening at school or where one works day to
day, contributors can keep in touch with progress on their piece of the puzzle.
One person noted, “Personally, I did start my code in school, but that does not
stop me from maintaining it now.”

Motivations

There are some other issues which weren't addressed by my survey. Although
it might not seem relevant to quality and performance, a person's interest has a
great deal to do with the outcome—it leads to a distinction between
“craftsmanship” and “work product”. Another person noted:

“Intent” is what I think all of these debates are about.
In the commercial world there is only one true answer
to “Why are you helping develop Linux?”—“To make a
living.” In the Linux community I'm quite certain the
answer would be more closely aligned to “For me to
use.” The Linux community tends to be self-driven and
self-motivated, and that is what leads to the successes
and the apparent failures in our development
environment.

We are not a company; we don't have any one person,
or group of people, setting the direction Linux will
take. That direction is set by those with the energy to
actually do something.

Another motive, akin to what pushed me to first join the effort, was shared by
another respondent who said, “When I wrote [my code] for the Linux kernel I
was working at [my former employer]. Linux use there was extensive, and I
wanted to give something back.” 

Motivation leads to the final and most significant issue—one which cannot be
examined by a developer survey.

Quality

In a world driven by marketing, image is the basis for purchasing decisions.
Even if a good image could be established for Linux by listing credentials or



tabulating years of experience, I'd be reluctant to shift to that level. I'd much
rather see acceptance and popularity for Linux based on quality and
performance.

Even though I hadn't asked specific questions on this topic, a few people
offered comments. One note seemed to identify, however obliquely, what may
be the key to Linux's success.

In general, my experience is that most software I have
seen which was developed by students is not of the
professional quality I would like to see. On the other
hand, much of the commercial software I have seen,
which was developed by professional software
development companies, is also not of the
professional quality I would like to see. The difference
is most people do not get to see the internals of
commercial software.

Developing on this theme, another wrote: 

The reason Linux is stable and usable is not because of
its student programmers [or lack thereof]. It is because
of the overwhelming feedback that alpha and beta
testers provide. When you read the Linux kernel, you
will find many parts are poorly structured, poorly
written and poorly documented. However, people
dared to test it and report their problems; Linus and
friends respected the error reports and went ahead to
fix them. That is why it works so well.

In addition, psychology sometimes causes weird
effects. If a user discovers a bug in his system, reports
the bug and sees it fixed eventually, that user is happy
because he was treated with respect. Most likely, he is
even happier than he would be in the bug-free case.

We not only need to bring the CREDITS file into an accurate state, but we also
need to acknowledge the thousands who have contributed to Linux by using it
and sharing their discoveries—good or bad—with others. 

Peter H. Salus reports the UNIX philosophy in A Quarter Century of UNIX as:

• Write programs to work together.
• Write programs that handle text streams, because that is a universal

interface.

I'd like to close by adding another entry, suggested by UNIX and dominant in
Linux: 

• Write programs you enjoy.



Postscript

I just received a note from the person who sparked the original survey. He
reports:

I took my “hand-me-down” Linux box, an unimpressive
75MHz Pentium with 64MB RAM and a tiny 600MB HD
to work. My boss was amazed that office applications
such as StarOffice were available and was quite
impressed when I read a Word document with
StarOffice and then converted it to HTML. Samba was
another revelation. Overall performance impressed
him. In a few crude tests, it outperformed a
“commercial” system running with 128MB RAM, dual
200MHz processors and all ultra-fast/ultra-wide SCSI
drives.

After a couple of callers indicated an interest in UNIX
versions, we checked the price of current systems. My
boss decided Linux was indeed priced right, and asked
me to start on a port.

It looks like we've won one more away from the dark side. 

Randolph Bentson 's first UNIX experience was booting a BSD VAX system on
July 3, 1981—the whole town had a celebration the next day. Dr. Bentson
started contributing to the Linux kernel in May 1994, and his book Inside Linux:
A Look at Operating System Development describes how many modern
operating system features have evolved and become essential parts of Linux.
He can be reached at bentson@grieg.seaslug.org.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Understanding a Context Switching Benchmark

Randy Appleton

Issue #57, January 1999

A look at the Linux kernel scheduler. 

One of the most important tasks of an operating system kernel is to manage
processes and threads. A process is a program in execution, and a thread is just
a CPU state stored within a process. A CPU context is either a process or a
thread. Most processes have only one thread, but some processes, particularly
servers, have more. Sometimes programs other than servers use multiple
threads; Netscape Navigator is an example of such a program. These processes
and threads represent the programs the user has selected to run. If managing
processes and threads is slow, overall computer performance will also be slow. 

Linux advocates naturally assume that Linux offers better performance than
MS Windows. Gregory Travis (greg@littlebear.com) set out to test this
assumption by testing the times needed to manage processes and threads. His
benchmark was a simple program that timed simple operations like fork or 
sched_yield by generating a large number of processes or threads that did
nothing more, individually, than looping in place. His results generated quite a
controversy in the Linux newsgroups and the kernel e-mail list. All tests were
done on a 200 MHz Pentium. (See Table 1.)

Table 1

Linux can create a process twice as fast and a thread three times as fast as NT.
Process creation takes longer than thread creation (12x for NT, 3x for Linux),
because processes have much more overhead. Memory maps and file
descriptor tables are just two of the things that must be created for a process
(but not for a thread). Note, however, that Linux creates an entire process (the
clone function) in about the same amount of time NT takes just to create a
thread (1.0 ms vs. 0.9 ms).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f1.jpg


Using this benchmark and an unmodified Linux 2.0.30 kernel, NT is much faster
than Linux at context switching, either between processes (1.9x) or threads
(3.2x). Since context switching occurs much more frequently than context
creation, it would seem that Linux has a problem. But does it?

Understanding the Problem

Why does this simple benchmark make the Linux context switching code so
much slower than Windows NT? To answer that, one must understand the
Linux scheduler.

The scheduler has a list called the run queue containing all contexts ready to
run. These contexts are not sorted in any way. Each context also has a
goodness, which is a measure of the current priority of the context. Two loops
are within the scheduler. The first loop (the searching loop) finds the context
with the highest goodness from the ready queue and selects that context to
run. The second loop (the recalc loop) recalculates the goodnesses if all
contexts have used their entire time slice. This second loop runs only
occasionally. The code in Listing 1 shows the structure of the schedule function.

The search loop needs a small bit of CPU time for every runnable process and
needs it on every context switch. The above benchmark shows the context
switch times with 40 contexts present and ready to run. That corresponds to a
load average of 40 for a single CPU system or 20 for a dual CPU system. These
are very large load averages, much larger than what is normally considered
healthy. Generally, there will be only a few (perhaps one to three) contexts to
choose from. Most processes and threads, even very active ones, will be waiting
for some I/O event to occur and are, therefore, not on the ready queue and not
considered for selection.

Even heavily loaded machines will generally have most contexts waiting for I/O
to complete; those contexts will not be on the run queue. Consider the site
http://www.winsite.com/, a very heavily loaded Internet site, with about 200
copies of httpd running as web servers. The total number of processes for all
purposes is about 420. The machine is a 333MHz Pentium II connected to three
T1 lines.

Measurements of this machine indicate that 24,221,164 context switches
occurred over a 17-hour period (400 switches per second). For these switches,
during 4% of the time there were over 10 contexts ready to choose from at one
moment, and during only 0.1% of the time were there twenty or more. The
longest run queue during the 17-hour stretch was only 36 contexts, out of the
420 possible. The mean run-queue length averaged only 2.5 contexts. In a
sense, this benchmark represents a worst case for Linux, and the average case,
even for heavily loaded machines, is much better.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2941l1.html


The second (recalc) loop is even more important in understanding these
benchmark results. This recalc loop runs only when every context on the ready
queue has used up its entire time slice (generally 20 ticks or 0.2 seconds). The
recalc loop then recalculates the priority of each context. Normally, this recalc
loop runs only occasionally. Most rescheduling is done in response to an
interrupt or because of an I/O request; therefore, most contexts do not use
their whole time slice. However, when a process or thread wants to yield the
CPU, it calls sched_yield, which treats it as if the process had used its entire
time slice. In this way, any process that calls sched_yield has its priority lowered
and will not be scheduled again for a substantial period of time. The code for
sched_yield is shown in Listing 2.

When all contexts have used their entire time slice, the scheduler recalculates
the priority of all contexts using the recalc loop. Since during this benchmark all
contexts do one cheap operation (sched_yield) and then have counter set to
zero, this recalc loop runs much more often than normal. Again, this
benchmark seems to be a worst case for Linux.

For the web site described above, measurements show only one of 200 context
switches required a recalculation of its priority—the other 199 context switches
did not.

Half the problem can be solved easily; the other half would be more difficult.

The Search Loop

There is probably no way to make the search loop run faster; it is well-written
code. However, it could be eliminated by simply keeping contexts in the ready
queue in sorted order; then the next context to run is the context at the head
of the ready queue. Keeping the ready queue in sorted order would require
code to take each context being added to the ready queue and place it in the
appropriate position. The time needed to find this position would add
complexity to the scheduler. For large load averages (implying many contexts
on the ready queue), there might be a considerable time savings, but in the
more normal case of small ready queues, there is no significant savings.

The Recalc Loop

Minimizing the time needed by the recalc loop would be easy. Again, it is well-
written code not likely to be improved upon, but it need not run as often as it
does. By changing sched_yield, the recalc loop can run much less often.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2941l2.html


For Linux 2.0.30, sched_yield acts as if the yielding context has used the entire
time slice. Instead, what if sched_yield acted as if the yielding context had used
only one tick of its time slice? Several effects would be noticed:

• The yielding process would have its priority reduced by one, rather than
temporarily set to zero.

• The recalc loop would run much less often. Generally, it would run 1/20 as
often (depending on process priority).

The new sched_yield is shown in Listing 3. Compare it to the one in Listing 2.
Only one more line is included, yet a large increase in performance is shown for
this benchmark. 

Table 2 summarizes the performance after this change was made. Note that as
the run-queue length increases, both the NT and the Linux scheduler take
longer to context switch. Linux starts out being the faster context switcher, but
NT does relatively better as run-queue length increases. For run-queue lengths
of 20 or less (almost always the case in real life), Linux is better.

Table 2

Summary

By making a two-line change to the source code, this benchmark can be greatly
improved. However, the benchmark arguably does not reflect real-life usage.
Nevertheless, only a two-line change to the kernel is required for a significant
benefit to a small number of users. After this change, Linux outperforms
Windows NT in all aspects of process and thread creation and in context
switching.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue57/2941.tgz.

Randy Appleton (randy@euclid.nmu.edu) is a Professor of Computer Science at
Northern Michigan University. He's been involved in Linux since the 0.99 days,
and manages the largest collection of Linux computers in Michigan's Upper
Peninsula. His other interests include foreign travel and flying small airplanes. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2941l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2941f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/listings/057/2941.tgz
mailto:randy@euclid.nmu.edu


Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

An Introduction to VRML

Tuomas Lukka

Issue #57, January 1999

Mr. Lukka takes a look at VRML basics including scripting, animation and
applications. 

VRML is intended to be for virtual reality what HTML is for text—a structured,
standard, cross-platform format for static or interactive hyperlinked content.
Just like HTML, it can be written by hand or generated by a program (the latter
is usually preferable). 

About a year ago VRML was catching on quickly, but much of that enthusiasm
seems to have faded. It has not yet taken its place alongside HTML, JPEG and
CGI as one of the basic, widely deployed web technologies.

One reason why this might be true is that no workable VRML browser for Linux
or other UNIX-like operating systems is available. The ones that do exist are
incomplete and generally not able to display web content in VRML well enough
for serious use. For example, the cross-platform offerings are not able to
handle Script nodes, which are one of the most important additions to the new
VRML97.

My theory as to why this might influence the general acceptance of VRML is
that a large fraction of people who are interested in cool technologies are using
Linux and do not want to support an application that does not work with Linux
and other properly working operating systems.

My scientific work needs the interactive visualization that VRML provides. While
many different 3-D packages are available, VRML has the advantage in that it
supports many sorts of interactions with the scene. Also, I would be able to
send the diagrams I made with it to colleagues by e-mail.

After finding the available browsers to be unsatisfactory, I decided to write my
own VRML browser. This browser, called FreeWRL, is rapidly approaching

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


VRML97 specification compliance, and supports most of the capabilities lacking
in other Linux browsers. I wrote it in Perl, as it was the only language that
would enable me to get it working quickly.

With the availability of FreeWRL, I think many free OS users might wish to
evaluate or re-evaluate VRML. In this article, I'll attempt to lay out the basic
concepts of VRML and explain how it might be useful.

To run the code listed here, you need a VRML browser. If you don't have one,
and are running Linux or some other UNIX-like OS, go to http://www.iki.edu/
lukka/freewrl/ and follow the installation instructions.

Notice in particular the words “if you have any trouble, e-mail me.” The very
worst thing you can do with free software is to download it, see that it doesn't
work for some reason, leave it, and tell your friends that it doesn't work. The
author will never know what is wrong with his package and will not be able to
improve it, while rumors will be spreading everywhere that the package is not
worth trying. Good bug reports are the least you can do for free software
developers in return for their effort. “Thank-you” e-mail is nice, but not nearly
as vital.

The Basics

Instead of a lengthy description, let's start with the code for drawing a simple
world (see Listing 1). We'll start with the inner section: a sphere is described
with a radius of 0.5. (In VRML, the units are usually called meters but that is just
a convention.) This sphere is the geometry of a Shape node, whose
“appearance” has a diffuseColor of 0.8 0 0, i.e., very bright red. Therefore, the
Shape actually describes a red sphere. This shape is one of the children of a 
Transform, whose translation is 0 1 0, i.e., one meter upwards on the Y axis,
which, from the default viewpoint on the positive Z axis, is up. The first line is a
comment telling the browser this file is written in VRML version 2.0.

Figure 1 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l1.html


In short, we have just described a red sphere with a radius of half a meter and
lying one meter above the origin. (See Figure 1.) Now the code in Listing 1 may
seem a somewhat onerous way of describing such a simple scene. For example,
the following might be easier:

# THIS IS NOT LEGAL VRML—SEE TEXT
Sphere {
        center 0 1 0
        radius 0.5
        color 0.8 0 0
}

In fact, you can do this: it is possible to create your own nodes suitable for your
own application using prototypes, which are similar in spirit to preprocessor
macros in C, as shown in Listing 2. 

Figure 2 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l2.html


Figure 3 

The scene described by the code in Listing 2 is shown from two different angles
in Figures 2 and 3. Now you can define any number of scenes like this, using
the PROTO you just defined. Of course, you do have to deal with including the
original PROTO in the beginning. It is also possible to refer to it in another file
using so-called EXTERNPROTOs, which include the interface part (in brackets)
but omit the definition (in braces). Even this might sometimes feel like too
much typing. In that case, you can easily write a Perl script to include the
correct PROTOs in your VRML files, or to do whatever other repetitive tasks you
need done.

In scene graphs, you can give a node a name using the DEF statement and use
it again in another place with a USE statement—see Listing 3.

Note that unlike with PROTOs, where a complete copy of the contents of the
prototype is made, only one Appearance node is present, which is referred to in
two places. For example, if we later animate the appearance to change the
color from red to blue, both the box and the sphere change color; whereas if
we animate the color of a Thing in the PROTO example, only that one Thing

changes color. Once a node has been named with DEF, it can be used in USE

statements any number of times.

Now that you have a sense of what is going on, let's have a more formal
description of what we just did. A VRML world is described as a hierarchy of 
nodes called the scene graph. Each node is of a particular node type, and for
each node type the VRML97 specification defines various fields. Each field has a
type and a default value. The syntax for a node is

https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l3.html


NodeType {
        field value
        field value
        ...
}

where the syntax for a value depends on the type of the field. For example, the
value of an SFVec3f is three floating-point numbers and the value of an SFNode

is another node just like above. 

The single-valued (SF) field types are:

• SFBool: a Boolean value, written TRUE or FALSE

• SFFloat: a floating-point number
• SFImage: an image, described by several integer values, first width, height

and number of components, then width*height values for the pixels
• SFInt32: a 32-bit integer
• SFNode: a node
• SFRotation: a rotation: 3 floating-point values for an axis and one for the

angle in radians
• SFString: a string in double quotes. Inside, double quotes and backslashes

are quoted by a backslash
• SFTime: a floating-point value, time in seconds since a specific origin
• SFVec2f: a two-dimensional vector containing two floating-point values
• SFVec3f: a three-dimensional vector containing three floating-point values

For most SF field types there exists a corresponding MF field type, which simply
means zero-or-more values of the corresponding SF type. For example, the
following would be legal values for a MFVec3f field: 

[]
0.1 2 3
[0.1 4 2]
[0.5 2 6 1 6 4 7 4 6]
[0.5 2 6, 1 6 4, 7 4 6]

That is, the values may or may not be separated by commas and must be
surrounded by brackets if there are more or less than one of them. 

These names for the field types are also used inside the PROTO declarations:
the syntax of a PROTO is basically

PROTO Name [
        field Type fieldName defaultvalue
        exposedField Type fieldName defaultvalue
        eventOut Type fieldName
        eventIn Type fieldName
        ...
] {
        Node { ... }



        ...
}

where inside the PROTO body, field values can also be specified using IS
statements, which equate that field with one of the published fields of the 
PROTO (e.g., the center field of the Thing PROTO above). 

For descriptions of all the node types and their fields as well as the exact
grammar and semantics of VRML, see the VRML97 specification (found at
http://www.vrml.org/) or a book. Figure 3 shows Netscape displaying the
definition for the IndexedFaceSet node (which makes it possible to describe
arbitrary polygonal geometry) from the web site.

This is basically all you need to know to create static VRML scenes, except for
the nitty-gritty details which you can find in the above-mentioned source. Once
you do create worlds using FreeWRL, send me a note by e-mail and I'll put a link
to your worlds on the FreeWRL web page.

Animation and Interaction

Of course, creating static scenes is not such a big deal. The truly interesting part
of VRML is its ability to interact with the user. Suppose you want to
demonstrate the concept of a cross product of two vectors to a friend. You can
draw all sorts of 2-D diagrams, but what would be a better description than a 3-
D graph in which your friend could adjust two vectors and see the cross
product change in real time (especially since you can embed it into a web page
using the HTML embed tag)? One of the FreeWRL demos (Figure 4) does exactly
this, plus the vector sum and difference.



Figure 4 

In the previous section, you saw how the Nodes describe the scene to be
rendered. What I didn't mention is that nodes can send events to each other
along specified routes. The event routes are independent of the scene
hierarchy.

Routes are specified by ROUTE statements. For example, Listing 4 creates a
white box (Figure 5), which cycles smoothly through red and blue when clicked,
returning to white 2.5 seconds after the click. What happens when you click on
the box? First, the BUTTON node senses it (most sensors in VRML sense events
from their siblings, in this case the Shape node defining the box) and sends a
touchTime event. The ROUTE statement causes that event to be routed into the
startTime of the TimeSensor TS, which causes it to start generating time events
for one cycle (the length of the cycle is 2.5 seconds). At each clock tick, the
TimeSensor sends an event called fraction_changed with an SFFloat value
between 0 and 1 (giving the fraction of the time in the cycle that has gone by).
This event is then routed to CI which is a ColorInterpolator, i.e., it does
piecewise linear interpolations of color values. CI then sends a value_changed
event that MAT receives as diffuseColor, then the color of the box changes. For
example, if CI receives a set_fraction event with the value 0.3, it checks its key
field and notices that 0.3 is between the first and second value. It is six tenths
of the way to the second value; therefore, the output is the color (0.6 0.6 0.6).

https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l4.html


Having events go through an interpolator to reach their destination is a fairly
common idiom in VRML, as this allows you to specify arbitrary mappings
relatively easily and cheaply. Several different kinds of interpolators are in the
VRML97 specification, for different data types.

Scripting

However, interpolators will take you only so far: for one thing, they can't toggle
on a light at a particular point in the sequence. It would have been easy for the
VRML97 specification authors to add a node type to accomplish this, but they
chose not to. Instead, they chose to create a very general interface to external
scripting languages, Java and JavaScript. You can define arbitrary behaviours for
your world using these programming languages.

If we want to have the Box in the previous example disappear and be replaced
by a small blue sphere for the first 1.5 seconds of each cycle, we need to use a
Script node. This particular example is shown in Listing 5. The TS and CI nodes
and the routes between them and MAT are the same as in the previous
example.

As is obvious from the example, the syntax of specifying fields inside the Script
node is similar to the PROTO interface section: instead of just saying fieldName

value we are saying kind Type fieldName followed by value for fields. This is
because the specification defines only three fields for the Script node: url, 
directOutput and mustEvaluate and leaves it up to the programmer to define
the eventIns, fields and eventOuts of his script.

The actual script inside the Script node is specified in the url field. In this case, it
is written in JavaScript and is embedded into the URL. It would also have been
possible to write the script into a file (with the .js suffix) and to refer to that file
in the URL. Alternatively, the script could have been written in another scripting
language (e.g., Java or Perl).

Applications

So far, we've discussed how to write VRML. However, the most interesting
results come from creating VRML automatically. Static worlds that are
programmed once are interesting mostly for games, art or advertisements.
Great possibilities remain to be exploited in the interface between the rest of
the information world and the 3-D browser.

https://secure2.linuxjournal.com/ljarchive/LJ/057/3085l5.html


Figure 5 

Also, we can use the API provided by the browser to create an application that
uses VRML to provide a part of the GUI. A fairly simple interface can be written
as a Perl program that uses the FreeWRL browser and GTK together to provide
a user interface, which would be difficult to do in VRML or GTK alone. The main
window consists of an entry into which you can enter a function you want the
program to plot, a button to plot it, and three labels showing the X,Y
coordinates and the function value at the point where your mouse last touched
the function surface. The program also places a blue box at this point in the 3-D
window. It would be trivial to add code to take 2-D or 3-D snapshots of this
scene, as either the usual image files (GIF/JPEG) or VRML, once you have the
scene displayed in the browser.

Basically, in addition to creating the GTK GUI, the code simply creates a browser
window, loads a VRML world from a string and then calls a browser method to
obtain a reference to an ElevationGrid node in the scene. It then sends events
to this ElevationGrid to set the shape of the surface via the height field. The
program also registers a listener for a TouchSensor node in the scene, so it is
able to obtain the mouse position on the surface. The really interesting thing is
that all the code for this application is under 200 lines with comments. (The
application is included in the FreeWRL distribution, so I will not include the full
source code here.)

It is also possible to access the VRML browser through a Java API called EAI
(external authoring interface). This enables one to write web applets that
access a VRML scene. At the time of this writing, FreeWRL partially implements



the Java EAI API but isn't yet able to provide this API while running inside
Netscape. By the time you read this article, this situation may have changed.

Conclusions

Rather than writing a complete tutorial, I've tried to give an overview of what
VRML is and what it might be useful for. I hope I've provided some new ideas
that you can put to use at the right time. If you need more complete references,
links to many sources can be found at http://www.vrml.org/, the web site of the
VRML Consortium. The FreeWRL home page is at http://www.iki.fi/lukka/
freewrl/ (iki.fi is a redirector to wherever the home page happens to be at the
time).

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue57/3085.tgz.

Tuomas J. Lukka (lukka@fas.harvard.edu) got his Ph.D. at the University of
Helsinki in 1995. He is currently on a three-year Junior Fellowship at Harvard
University, spending his time doing research on artificial intelligence and
molecular quantum mechanics, as well as playing music and writing free
software. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/listings/057/3085.tgz
mailto:lukka@fas.harvard.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Getting Started with Quake

Bob Zimbinski

Issue #57, January 1999

How to get this most popular game to run on your Linux system. 

Quake is one of the coolest games available for any platform. Thanks to Dave
Taylor, who began id Software's tradition of porting their games to Linux back
in 1995 with Linux Doom, today we have Quake for Linux. This article is meant
to be a quick start to getting Quake running on your Intel Linux system. If you
encounter problems not addressed here, look at the Linux Quake HOWTO at
http://www.linuxquake.com/howto for more detailed troubleshooting
information. 

Figure 1. Player about to capture the blue flag in the “Capture the Flag” game

Necessary Files

The minimum system requirements for Quake are shown in the “System
Requirements” sidebar. To install Quake on your Linux system, you will need
some flavor of the official Quake distribution from id—either the retail DOS/
Windows CD-ROM from a software store, or the shareware version downloaded
from the Net. Alternatively, if you already have Quake installed on a DOS/
Windows machine, you can use the relevant files from that installation.

In addition to the official Quake files, you will need Linux-specific binaries. All
the necessary files for Linux Quake are available at ftp://ftp.idsoftware.com/.
id's site can be very busy, so you may want to use one of their mirror sites (see
Resources).

Version numbers in this article are current as of September 1998 and aren't
likely to change. Quake is considered a finished product, so new versions will be
released only if major bugs are found.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f1.jpg


The shareware Quake for Windows distribution is necessary only if you don't
have a Quake CD-ROM (ftp://ftp.idsoftware.com/idstuff/quake/quake106.zip).

Quake can render its graphics three ways: in an X11 window, full-screen SVGA,
or hardware-accelerated OpenGL. You'll need to download the binaries only for
the renderers you plan to use. (See Resources.)

QuakeWorld is a multi-player version of Quake optimized for play over the
Internet. Get one of the packages listed in Resources if you plan to play on-line.
Red Hat 5.x/Debian 2.x users should get the glibc version. The .rpm and .tar.gz
package contents are identical. Choose one according to your distribution.

If you plan to run an Internet QuakeWorld server, select one of the dedicated
server-only binaries (see Resources). Most people won't need them.

System Requirements

Installation

Start by creating the directory in which you will install Quake. The “standard”
location is /usr/local/games/quake. The QuakeWorld RPM package installs its
files in this directory, so it is a good idea to install here if you plan on installing
QuakeWorld later.

mkdir /usr/local/games/quake

Installing From CD-ROM

If you have a very early release of the Quake CD-ROM, these instructions won't
work. Please see the Linux Quake HOWTO for details on installing from older
CD-ROMs.

A file on your Quake CD-ROM, resource.1, is an lha archive of all the Quake
game files (lha is a file compression and archiving format like tar or zip). We will
use the lha command (see Resources) to extract it.

Mount your Quake CD-ROM, move to your Quake directory and extract the
resource.1 archive:

mount /dev/cdrom /cdrom #change for your system
cd /usr/local/games/quake
lha e /mnt/cdrom/resource.1

Your /usr/local/games/quake directory should now contain a bunch of new files
and a subdirectory called /id1. The most important files for Linux Quake are in /
id1, so you can safely remove everything else. If you are totally new to Quake

https://secure2.linuxjournal.com/ljarchive/LJ/057/3180s1.html


(or even if you are not), you may wish to keep the *.txt files for reference. On
my system, I put all the READMEs that accumulate into a /doc subdirectory. 

Installing the Shareware Version

The single-episode shareware version of Quake has all the features of the full
version of Quake, with a couple of major limitations: you cannot play
QuakeWorld (multi-player) with it, and you cannot play custom or modified
levels.

Installing the shareware version of Quake is not much different than installing
from the CD-ROM. Put the quake106.zip file in your Quake directory, then
extract the resource.1 lha archive:

cd /usr/local/games/quake
unzip -L quake106.zip
lha e resource.1

Now save the README files (optional) and remove everything else except the /
id1 directory: 

mkdir doc
mv *.txt doc
rm -f *

Installing from a Pre-existing DOS/Windows Installation

If you have Quake installed under Windows or DOS on a different machine, you
can transfer the files in quake/id1/ to your Linux system via FTP or some other
mechanism. Keep in mind that the file names on your Linux system must be in
lower case for Quake to find them, so you may have to rename them after the
transfer. Also note that it may be necessary to delete your DOS/Windows
installation after you do this, to remain in compliance with the terms of id's
software license.

If your DOS/Windows and Linux systems are on the same machine, you have
two options: copy the files from your DOS/Windows partition to your Linux
partition, or link to the necessary files from Linux. Both options work equally
well. You save around 50MB of disk space when you link instead of copy.

Whatever you choose to do, start by changing to your Quake directory and
creating a new subdirectory called /id1:

cd /usr/local/games/quake
mkdir id1

To copy the files from your DOS/Windows partition, type: 



cp /win95/games/quake/id1/*.pak id1

To create links to your DOS/Windows Quake files, type this instead: 
cd id1
ln -s /win95/games/quake/id1/*.pak .

Of course, you should replace /win95/games/quake in the examples above with
the correct path to your DOS/Windows partition and Quake directory. 

Linux Binary Installation

Now it is time to decide which of the three Quake executables you would like to
install.

• X11 Quake allows you to run Quake in a window on your X desktop. It is
the least exciting client, but is a great, safe way to test your installation.

• Squake is the SVGAlib Quake client; it runs full screen on your console.
• GLQuake is the OpenGL Quake client. If you have a 3Dfx card, this is a

must-have.

Download the packages you want (see the “Necessary Files” section) and extract
them to your Quake directory: 

cd /usr/local/games/quake
tar -xzf XXXX-i386-unknown-linux2.0.tar.gz

Sound Considerations

If you want sound from Quake, /dev/dsp needs to be readable and writable.
Most distributions give it 662 (rw-rw—w-) permissions by default. The simplest
solution is just to chmod 666 /dev/dsp. On most systems, the ability to read
from the sound device will not pose a significant security threat. If this
approach is unacceptable for your system, create a group that owns /dev/dsp
and make your Quake players members of that group.

If you don't have a sound card installed or configured for your system, make
sure to use the -nosound command-line option when starting Quake. Failure to
use -nosound will cause Quake to exit with a segmentation fault when it tries to
initialize your non-existent sound card.

X11 Quake

If you installed the X11 client, your system may need further configuration for
glquake and squake, but at this point quake.x11 should be ready to go.

cd /usr/local/games/quake
 ./quake.x11



If all is well, a small window running a Quake demo should appear. You should
hear sound effects and possibly music, if the CD is mounted. You can use the -
width and -height command-line options to create a bigger window. 

SVGAlib Quake

Both squake and glquake require SVGAlib to be running (glquake uses SVGAlib
for keyboard and mouse input, in case you were wondering). SVGAlib comes
with most modern distributions and must be properly configured before
squake or glquake will run correctly.

libvga.config is SVGAlib's configuration file. On most systems, you will find it in
either /etc or /etc/vga. Make sure the mouse, monitor and video card settings in
this file are correct for your system. See the SVGAlib documentation for more
details.

If you don't already have SVGAlib on your system, it is available on Sunsite (see
Resources).

If you have a Red Hat 5.x or other glibc-based Linux distribution, remember
that since Quake was compiled with libc5, all the libraries it links to (such as
SVGAlib) must also be libc5-based. If you are going to compile a newer version
of SVGAlib yourself, make sure it links to libc5 (and friends) rather than glibc, or
Quake won't run.

Once svgalib is properly installed, you are almost ready to run squake. squake

needs to run with root privileges in order to access your sound and graphics
cards. One (bad) way to deal with this is always to run it as root. Responsible
system administrators will cringe at this filthy suggestion. Making the Quake
binaries setuid root is a more acceptable solution. Quake can then be run by
regular users and still have the privileges it needs to access the graphics and
sound devices. Be warned that any setuid program represents a security risk. A
clever user could exploit a bug or security hole in a setuid program to gain root
access to your system. If you don't run a multi-user system, this will not be a big
concern.

Make squake setuid root with the following commands:

chown root squake
chmod 4755 squake

Note that you should run squake from a virtual console. It won't run from X
unless you are root when you start it, and running a game as the root user is a
situation to be avoided. If you are in X, do a ctrl+alt+f1, log in and then: 



cd /usr/local/games/quake
./squake

Figure 2. Player being blown up with a rocket launcher

Figure 3. Scene showing pretty transparent water

GL Quake

Hardware-accelerated OpenGL Quake is Quake the way it was intended to be.
There is no substitute—once you have experienced it, there is no going back.

To make GLQuake work, you need a 3-D card with the 3Dfx Voodoo or Voodoo2
chip set on it, the glide library, the Mesa library and SVGAlib. Getting your 3Dfx
card working under Linux is a big topic, one I will discuss very briefly here. See
Resources for places to find more information.

First of all, make sure SVGAlib is installed and properly configured as outlined in
the previous section. Remember, glquake uses SVGAlib to get mouse and
keyboard input.

Next, get and install the glide library. Glide is a library that provides an API for
programming 3Dfx-based cards. If you want the Mesa graphics library to use
your 3Dfx card, you must have it. Select the package(s) appropriate for your
system (see Resources) and install according to the instructions on the web
page.

Note that unless you download the 3Dfx-device-driver package in addition to
the Glide library, you will be able to run Glide applications (like GLQuake) only
as root. Install the /dev/3dfx module and you can play GLQuake as a regular
user.

Once you have glide installed, try out the test program that comes with it.
Remember this test program; it is a good way to reset your display if you ever
have a glide application (like GLQuake) crash, leaving your screen switched off.
Run this test from a VC, not X. It is possible for the test application to lose
mouse and keyboard focus in X; then you'd have no way of shutting it down.
Type usr/local/glide/bin/test3Dfx and your screen will turn blue and prompt
you to press any key. After you press a key, you will be returned to the prompt.

Now you need to install Mesa, a free OpenGL-like graphics library by Brian Paul
(brianp@elastic.avid.com). Luckily, you won't have to look far, because Mesa 2.6
is included with the QLQuake and QuakeWorld binaries. All you have to do is
move it to the right place:

https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3180f3.jpg


cd /usr/local/games/quake
cp libMesaGL.so.2.6 /usr/local/lib
ldconfig

If you want to upgrade Mesa to a more recent version (Mesa 3.0 should be
released by the time this is printed), download the latest version from ftp://
iris.ssec.wisc.edu/pub/Mesa. When installing Mesa 3.0 or higher, keep in mind
that glquake is linked against libMesaGL.so.2, so you must create a symbolic
link from your new libMesaGL.so.3.0 to libMesaGL.so.2 in order for glquake to
find it. Also, as I mentioned earlier, remember that since Quake is a libc5-based
application, all the libraries it links to must also be built with libc5. A libMesaGL
linked against glibc will cause glquake to abort with a segmentation fault and
possibly hang your system. 

Now that SVGAlib, glide and Mesa are installed, you should be able to run
glquake. Switch to a VC if you are in X (ctrl+alt+f1) and start glquake:

cd /usr/local/games/quake
 ./glquake

QuakeWorld

QuakeWorld is a multi-player version of Quake that is optimized for Internet
play over a modem. Problems with the original Quake's network code, like
excessive lag and packet loss, are reduced or eliminated in QuakeWorld.

To play QuakeWorld, you need the full, registered or retail version of Quake
and a Linux QuakeWorld client. QuakeWorld clients come in the same flavors
(X11, SVGAlib and OpenGL) as normal Quake, but are bundled together in one
package. The prerequisites and configuration for these binaries are the same
as for regular Quake, so if necessary, refer to the previous sections for help on
setting up SVGAlib or glide/Mesa.

If you are installing one of the RPM QuakeWorld packages, installation should
be as simple as typing the following:

su root
rpm -Uvh qwcl-xxxxx.i386.rpm

To install from the tar.gz packages, type: 

cd /usr/local/games/quake
su root
tar -xzf qwcl-xxxx-i386-unknown-linux2.0.tar.gz

Four new executables (qwcl, qwcl.x11, glqwcl and glqwcl.glx) will be installed in
/usr/local/quake. glqwcl.glx is a GLX application linked against standard
OpenGL libraries. This should allow QuakeWorld to run with OpenGL
implementations other than Mesa. The programs qwcl, glqwcl and glqwcl.glx



are installed setuid root so that the graphics devices on your system can be
accessed. If you installed the /dev/3dfx driver mentioned in the GLQuake
section, you can remove the setuid permissions on glqwcl and glqwcl.glx. 

Once QuakeWorld is installed with your Quake files, you can start it up by
typing the following:

 ./qwcl +connect some.server.address

Related Software

Qstat is a command-line utility created by Steve Jankowski
(steve@activesw.com) that returns the status of Internet Quake, QuakeWorld
and Quake 2 servers. Qstat (see Resources) is a must-have tool if you are
planning on doing any Internet Quaking.

XQF (see Resources) is a graphical front-end to Qstat that uses the GTK toolkit.
This is currently the best QuakeWorld/Quake 2 server browser in existence.
Roman Pozlevich (roma@botik.ru) is still cranking out new versions at the rate
of about one per month. If you are familiar with GameSpy for the Windows
platform, this is the closest thing to it for Linux.

Resources

Bob Zimbinski is soft and pasty from years of playing computer games. When
not playing games or working as a consultant for Control Data Systems, Mr.
Zimbinski sleeps. He is co-author of the Linux Quake HOWTO. He can be
reached via e-mail at bobz@mr.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3180s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

First Canadian National Linux InstallFest

Dean Staff

Issue #57, January 1999

Canada has a “Linux Day”--a novel method for getting the word out. 

Saturday, September 26, 1998 was a big day for the Linux community in
Canada—the First Canadian National Linux InstallFest was held. 

The InstallFest was organized on a national level by CLUE (Canadian Linux
Users' Exchange) to provide experienced help to those interested in installing
Linux on their computers. CLUE is an organization that supports the
development of local Linux User Groups and also co-ordinates events,
corporate sponsorships and publicity at a national level. CLUE hopes that by
enhancing association and communication amongst Linux developers, users,
suppliers and the general public, it can increase the use and appreciation of
Linux within Canada.

Highlights

A dozen different events were held by Linux User Groups across Canada, from
Halifax to Victoria, all taking place on the same day.

The Montréal event, at its peak, had as many as 100 people in the room at once
and by all accounts had 200 to 250 people stop by. They did 40 installs, only 20
of which were from preregistrations. They even got the crew of the local TV
show Branch to stop by for an interview, due to air in November. Also worthy of
mention is that they had guru Jacques Gelinas, author of the LinuxConf
software, answering questions.

Two InstallFests were held in the Toronto area: one at Seneca College and the
other at the University of Toronto Bookstore. The Seneca College event had a
late start due to a power outage, but more than made up for it later as the
unofficial count of installs was about 100. They even rolled out their Beowulf

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


class Linux cluster for the masses to look at and see how a few “small” Linux
boxes can be turned into a “supercomputer”.

The Manitoba UNIX Users Group (MUUG) held their InstallFest at the University
of Manitoba as a two-day event beginning on Friday. As this was their first
InstallFest, they deliberately kept it small and aimed it mostly at the faculty and
students of the U of M. About 140 people attended, with more than half
purchasing a Linux CD, and MUUG did 19 successful installs. Attendance was
greater than expected, probably due to the national news coverage the event
received. At least one person came in who said he heard about the InstallFest
from a segment on CTV News-1, a national news network.

The MUUG web site made mention of one more interesting story from the
event. One attendee brought in a system which became known as “Franken-
puter”! It appeared to be two separate cases tossed together with all sorts of
spare parts the owner scrounged up, connected with a piece of coax Ethernet
cable. He spent as much time swapping parts and reconfiguring on the fly as he
did installing Linux. He apparently showed up at the start of the event on Friday
and didn't finish until midafternoon on Saturday. Even after all that, he still
hung around afterwards to help others with their installs.

The Ottawa InstallFest was hosted by the Ottawa Carleton Linux Users Group
(OCLUG). While almost all the other events were held in a more academic
setting of local colleges and universities, OCLUG had their event sponsored by
NovoClub, a local retail store. NovoClub is located in a shopping mall and
managed to get an empty storefront for OCLUG to use. They also arranged for
display kiosks by several companies to be set up in the mall. There were
training companies, a local ISP and most notably Corel Computer displaying
their NetWinder. Of course, NovoClub offered specials on their very large
selection of Linux products. The whole event was more like a mini-tradeshow
than a typical InstallFest.

The unofficial count at the installation storefront was 250 people. This count
included those who came to have Linux installed on their machines, members
of the press and “just curious” folk who stopped to ask questions while
wandering around in the mall.

OCLUG chose not to have people preregister; they decided to just let anyone
come and register the day of the event. It was supposed to start at 10 AM and
go until 5 PM. However, a line had formed by 9 AM when the mall opened and
OCLUG soon ended up with a backlog of machines waiting for Linux
installation. At 3 PM, they were two hours behind and had to start turning
people away. By the time it was over, they had installed Linux on 50 to 60
machines and still had ten they could not finish.



Not all events were as popular as the ones listed above. The New Brunswick
Linux Users Group had only ten people attend, with four successful installs.
They were a bit disappointed with the low turnout. However, it was also
homecoming week at Mount Alison University in town and a football game was
in full swing at the same time as the InstallFest. They are in the process of
designing a tutorial for their new users and anyone else who is interested. The 
Fredericton InstallFest was a little larger, with thirty attendees and ten
installations.

Overview

The general consensus is that as a public relations event, the InstallFest was an
overwhelming success. It got a lot of people asking questions about Linux,
some of whom took the plunge and installed Linux for the first time. However,
it was not completely successful as a technical event. By no means is this a
reflection on either those who organized the individual events or the volunteers
who helped with the installations—they all did a stellar job—just that no one
was prepared for the magnitude of the response.

Most LUGs asked people to register prior to the event. This allowed a chance
for the groups to get as many volunteers as they thought they would need.
Some groups, such as the Vancouver Linux Users Group, were swamped with
preregistration and had to halt registration prior to the event because they
could not accommodate everyone. Even with preregistration, the day of the
event was hectic. The report from Seneca College in Toronto was that their
event lasted until 9 PM, and they were still unable to complete all the installs.
Other events had similar reports, and despite the best-laid plans, demand
overwhelmed the number of installers.

Some installs were unsuccessful, due to either time constraints or hardware
compatibility issues that were not easily overcome. That said, the ratio of
unsuccessful to successful installs was minimal. Overall, it was one or two to
fifty. I've seen more failures than that on MS Windows installations.

Where do we go from here?

One interesting side effect of the OCLUG InstallFest was that preliminary
discussions were started between Zenith Learning Technologies and Corel
Computer to set up a corporate Linux training program. Also, Oliver Bendzsa of
Corel Computer reported that he was as busy at the InstallFest as he was at
Canada Comdex, a 3-day trade show in Toronto that drew some 50,000 people.

Dave Neill, a founding member of OCLUG, said that while grassroots events like
the InstallFest are a great way to promote Linux, it is now time to start
approaching local computer resellers and showing them there is a demand for



systems with Linux pre-installed. I work for Inly Systems, the largest
independent computer reseller in the Ottawa area, and while we are now
expanding the variety of Linux products we carry, we still do not offer Linux
pre-installed on our machines. With at least three technicians on staff who have
experience with Linux and/or UNIX installations, we could do this if people
began asking for it. However, we are an exception; most resellers don't have
technicians with Linux experience.

One issue that must be resolved is how and where companies can have their
technicians trained. This is where training companies such as Zenith Learning
Technologies come in. The fact that Zenith was at the OCLUG InstallFest shows
that they realize the potential for Linux training. With such companies as Corel,
Oracle, Intel and Netscape investing time and money in Linux, it won't be long
before other training companies jump on the bandwagon.

Today Canada, Tomorrow the World!

Plans are already in the works for a Global Linux InstallFest next year. If you
want to know more or would like to get your LUG involved, please check out the
CLUE web site at http://www.linux.ca/ and contact Matthew Rice. An event of
this magnitude will need lots of help organizing, so don't be shy—watch out Bill,
the Penguin is on the move!

For more information on the individual InstallFest events, please visit the CLUE
web site for a list of links to all the participating user groups.

Dean Staff (dstaff@echelon.ca) is a computer technician for Inly Systems and a
member of OCLUG. When not at work, Dean enjoys spending time with his wife
and two daughters and playing with his aquarium. 

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:dstaff@echelon.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

VariCAD Version 6.2-0.3

Bradley Willson

Issue #57, January 1999

For the price, it delivers a strong value; however, a learning curve is involved. 

• Manufacturer: VariCAD
• E-mail: mail@varicad.com
• URL: http://www.varicad.com/
• Price: VariCAD for Linux: $299 download via Internet$499 with support via

Internet (CD-ROM included)$199 education version
• Reviewer: Bradley Willson

VariCAD is a fast, compact and economical mechanical CAD package featuring
true 3-D modeling, solids and spatial analysis, 2-D to 3-D and 3-D to 2-D
projection and extrusion, parametric symbol and mechanical part libraries and
surface development utilities. It can be installed as a stand-alone application or
on a server and networked in peer-to-peer and client-server configurations. The
Linux version offers additional file security with chown. For the price, it delivers
a strong value; however, a learning curve is involved. 

Knobs, Levers and Switches

At the interface level, VariCAD resembles Microstation95 with a multitude of
icons and sub-menus in both static display and windowed groups. The top
menu bar is generic, with pull-down and side menus. Most of the available
functions are presented in both the icons and menu bars. While you work, the
menu choices and icons change functionality relative to your working
environment. Menus, sub-menus, icons and sub-icons are easily customized by

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


editing separate text configuration files. In a networked environment, each user
is able to customize his own menus and icons to his liking. The layout of the
screen worked reasonably well for my work style. I was inclined to use the
menu bar more at the beginning and the icons later on, once I better
understood the meanings of the icon symbols.

The icons are arranged in a column matrix, loosely separated into two sections
with active functions at the top and function group selection icons at the
bottom. Changing the group of active functions is a simple matter of selecting
one of the function group icons. Some of the function group icons also launch
floating icon windows. I found the tool tips to be a great help in deciphering the
icon glyphs.

The command line at the bottom of the window reminded me of AutoCAD, but
that is the only resemblance. The acronyms varied from those I knew in
AutoCAD. Selecting a menu item or icon causes the associated acronym to be
displayed on the command line. Commands can also be entered manually
using acronyms. Additional parameters are either entered as single letter, digit
or symbol options, or by interactive selection of drawing and solid objects.

Figure 1. Machined Plate 2-D View

Figure 2. Machined Plate 3-D View

File, Open...

Example files are always a plus when working with a new program and VariCAD
ships with several well-crafted samples of the program features. From those
files, I was able to get a rough idea of performance and capabilities. Both 2-D
and 3-D files loaded quickly on my 200MHz machine with the 3-D samples
taking slightly longer to load, depending on the number of elements involved.
Overall, I was satisfied with the graphic display quality, but VariCAD lacks the
ability to export a rendered image to a standard graphics file format. To send a
concept picture by e-mail, a separate utility must be used to create the
snapshot file. As far as printed quality is concerned, VariCAD scores excellent.
The lines are crisp and the text is clear, even on a dot-matrix printout. Since
your output may vary, VariCAD includes all of the popular drawing size formats
in both metric and ANSI.

Figure 3. Another Example in 2-D View

Figure 4. Another Example in 3-D View

https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f4.jpg


File, New...

Working with the examples was easy, but getting started with a blank slate was
another matter. As each new experience has a learning curve, I expected some
level of difficulty in getting started, but I found the VariCAD learning curve to be
closer to that of CATIA than to Microstation95 or AutoCAD. As a member of that
group of people who jumps right into working with software without reading
the manual, I ran into some problems with symbology and default settings. The
default sizes of the icons were too small for my old monitor to show clearly.
Once I learned how to enlarge them, the symbology became easier to decipher.

Figure 5. On-line Manual

The on-line manual was instrumental in helping me learn to modify the icon
characteristics and other tasks during the review process. Pop-up tool tips were
also quite helpful, but I would still like to see VariCAD offer a printed quick
reference guide for the icon graphics. I am also one of those people who likes a
printed page for reference, so I was happy to discover the on-line manual can
be spooled to a printer or text file. I also found the search engine left
something to be desired in that it did not effectively return results on multiple
keyword searches. Overall, the manual appears to be complete, with a few
translation, grammar and spelling errors throughout the document.

At first, I found working in VariCAD's 3-D environment to be awkward and
unforgiving. The error messages that resulted from missed picks were
annoying. Even CATIA will ignore missed picks and allow the user to try again
without interrogation. I like the mouse-driven zoom and pan features, which
make working on a large area easy. I missed the presence of an axis displayed
at 0,0,0 with the vectors labeled X,Y and Z. The reliance on colors for
identification of the axis vectors will make using the product difficult for color-
blind users.

VariCAD recommends constructing the geometry for the solids first, then
projecting the finished product into the 2-D drawing. This approach makes
sense because the projected geometry does not automatically update when the
parent solid is modified. Overall, the solids module is comprehensive and
includes features such as moment of inertia, interference and material
properties analysis in addition to solid merging, subtraction and compound
surface manipulation features. I liked the “Bill Of Material” feature, because it
makes it possible to specify the materials and parts “on the fly”.

VariCAD comes with extensive parametric part and symbol libraries. If you need
a 2-inch long 1/4-20 bolt included in your design, it is a simple matter of
defining the parameters in a dialog box and then placing the resulting part in
either 2-D or 3-D modes. The modular design philosophy behind the

https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3004f5.jpg


“Assembly” feature is becoming more popular, so VariCAD is right in stride with
the trend. This feature gives you the ability to design individual components in
small separate files and then assemble them in a “collector” drawing file.

Finally, VariCAD features DXF and IGES file format import and export
capabilities for easy communication between other popular CAD packages.

In Conclusion

VariCAD is powerful and efficient with a long history of development. VariCAD
celebrated its tenth anniversary in 1998. The people at VariCAD have elevated
rapid development to a science. In the past six months, they have released
three versions of VariCAD, and by the time this review is printed, they will have
released a few more. October 1998 was the most recent release date, with
major improvements in the area of 3-D to 2-D associativity as well as other
enhancements. VariCAD is a work in progress and continues to improve with
each new release.

Credits

Bradley J. Willson currently designs and troubleshoots tooling for the Boeing
777 program and fills the chair of chief cook and bottle washer for Willson
Consulting Services. His friends understand and forgive his addiction to
computer technology, while others wonder how he can stand the countless
hours he spends staring at screens. According to Bradley, the secret is attitude
—and maybe a mild case of radiation sickness. He can be reached via e-mail at
cpu@ifixcomputers.com and http://www.ifixcomputers.com/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3004s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

SciTech Display Doctor 1.0

James Youngman

Issue #57, January 1999

Display Doctor 1.0 for Linux achieves a goal even more useful than the DOS
product; it uses SciTech's driver technology to provide drivers for video cards
not supported by XFree86. 

• Manufacturer: SciTech, Inc.
• E-mail: info@scitechsoft.com
• URL: http://www.scitechsoft.com/
• Price: $39.95 US
• Reviewer: James Youngman

SciTech has been selling their product for DOS and Windows for some time
now. It is used mainly for installing VESA display services for graphics adapters.
This is not an issue for Linux, since Linux programs never need to call the video
BIOS.

Display Doctor 1.0 for Linux achieves a goal even more useful than the DOS
product; it uses SciTech's driver technology to provide drivers for video cards
not supported by XFree86. This includes cards from those manufacturers who
will not release the information required in order to allow XFree86 drivers to be
written.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


This review will cover the Preview Release of SciTech Display Doctor 1.0 for
Linux. You can download the trial version from SciTech's web site (http://
www.scitechsoft.com/).

Display Doctor can be installed on any glibc2 system which already has XFree86
(3.3.2), GPM, and Tcl/Tk (7.4 or higher) installed. These requirements match one
of the machines on which I run Linux. The preview is available as both a
compressed tar file and as an RPM package. I chose to install the RPM package,
since I was reviewing Display Doctor on a Red Hat 5.1 system.

You can install the package with rpm -i, but you must do this from a virtual
console as opposed to a TELNET session, xterm or serial console. After the files
are installed, the post-install script proceeds to set up the program
interactively. This latter aspect may come as a surprise to those who are used
to installing packages with RPM.

The first problem I had was that I needed to tell the install program which
mouse protocol to use, even though this information was in a configuration file
(an existing XF86Config and the file /etc/sysconfig/mouse on my Red Hat Linux
system). The installation program immediately provided a dialog box for the
purpose of fixing this, which was quite easy. After doing that, the rest of the
configuration process can be navigated with the mouse.

The setup program detected the Matrox Millennium card I installed, but I had
to give it the horizontal and vertical retrace specifications of my monitor (this
may be because my monitor is four years old). I also have a UK-layout Microsoft
Natural keyboard, which some X-server setup programs don't acknowledge, but
to my surprise this went without a hitch and I could type the British pound
symbol quite happily.

The final step in the configuration process is selecting the screen modes to be
available for the X server. At the start of the selection process, every possible
screen mode is pre-selected for you. When I started the X server for real, with 
startx, I was presented with a 1920x1080 screen mode, which unfortunately
offers an aspect ratio of 16:9 and looked peculiar on my conventional 4:3
monitor. Exiting X, I removed this mode from the ModeLine list in the
configuration file (which, oddly, is still called XF86Config). Restarting X, I was
presented with a 1600x1200 screen mode—the same aspect ratio as my
monitor.

In use, the SciTech Display Doctor X server worked well. From an installation
point of view, it is just another X-server binary (/usr/X11R6/bin/XF86_SDD) and
doesn't interfere in any way with the regular XFree86 files. I found this to be of



immense benefit and in marked contrast to the MetroX and AcceleratedX
products.

The server implementation appears strikingly similar to the XFree86 server; the
same set of extensions are provided and the same configuration file name and
format is used (with driver name “scitech” instead of “svga” or “accel”). This is a
handicap, since it prevents easy changing between X servers (XFree86 bails out
when it sees the unknown driver name “scitech”). If you query the Display
Doctor X server with xdpyinfo, it appears to be version 3.3.2 of the XFree86
server, which is quite confusing. I assume this particular oddity will disappear
with the official release of the final product.

Since this is the preview release, benchmarks are not very illuminating. I look
forward to benchmarking the full release of Display Doctor against the next full
release of XFree86.

One thing I find most exciting about this technology is that it is just as
applicable to Linux as it is to Windows. Even the same executables are used
(Display Doctor installs a bunch of Windows-format 32-bit PE dynamic-link
libraries in /usr/lib/nucleus). This is of interest to Linux fans, because SciTech is
planning to use this same technology to bring the same level of support to KGI/
GGI, SVGAlib and the forthcoming frame-buffer support currently in the Linux
2.1 kernel. According to the readme.txt file, Mesa may even benefit from the
same treatment.

Unfortunately, I cannot say how Display Doctor made it possible for me to use
X on a graphics card that XFree86 does not support. While it would have been
nice to try this, the fact of the matter is that I have deliberately bought only
hardware supported by Linux. If all Linux users did this, the market for
SciTech's Display Doctor would be constricted; on the other hand, some of the
things they are planning will advance the scope of the product beyond just X. I
think Display Doctor is an interesting option for a bundling deal, particularly if
SciTech follows through with their planned feature list.

James Youngman has recently changed jobs from VG Gas Analysis Systems to
Logica. He has no significant hobbies apart from drinking real ale (see http://
www.camra.org.uk/). James has been (very!) happily married to Erica for just
over a year now. James claims to be intending to take up sailing again. You can
reach him at jay@gnu.org.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

PartitionMagic 4.0

Roderick Smith

Issue #57, January 1999

PartitionMagic 4.0 contains an impressive array of features for partition
management. 

• Manufacturer: PowerQuest
• E-mail: magic@powerquest.com
• URL: http://www.powerquest.com
• Price: $69.95 ($29.95 upgrade)
• Reviewer: Roderick Smith

PowerQuest was the first company to develop a popular commercial product to
modify a computer's partitions non-destructively. Developed originally for OS/2
and then ported to DOS and MS Windows, previous versions of PartitionMagic
have been able to create, destroy, resize and copy FAT-16, FAT-32, HPFS and
NTFS partitions, as well as convert from FAT-16 to any of the other formats.
Needless to say, this has been a great boon to those with multiple operating
systems, since it frees them from the tyranny of fixed partition sizes, allowing
changes to disk resource allocation without the need to back up to tape, re-
partition and restore. Up to version 3.05, however, PartitionMagic included no
Linux-specific support. We could modify file systems for DOS, MS Windows and
OS/2, but if we needed to modify Linux file systems, we had to do the backup/
re-partition/restore dance or use various other workarounds, such as creating
new partitions for spillover from existing partitions. PartitionMagic 4.0

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


promises to change this, with support for Linux EXT2 and Linux swap partition
types. 

Program Features

PartitionMagic 4.0 contains an impressive array of features for partition
management. These features are included:

• The ability to create and delete partitions: when created, partitions can be
formatted for FAT-16, FAT-32, HPFS, NTFS, EXT2 or Linux swap. Partition
table entries will automatically be marked with the appropriate file system
type.

• The ability to move and resize partitions: this feature applies to all
supported partition types, including Linux swap. For FAT, allocation block
sizes are adjusted automatically as appropriate. Unlike previous versions
of PartitionMagic, 4.0's move and resize features are integrated into one.
Partitions can be moved and resized in one user-interface operation and
they can be resized towards or away from the beginning of the drive as
well as the end. Such operations may result in two or more actual actions,
however.

• Partition copy: this copies a partition from one location to another,
including across physical disks, and works with all supported partition
types. This makes it possible to replace a hard drive easily by copying
multiple operating systems to a new drive with a single program. The
copies are fast, too; I timed a copy of my Linux /home directory from one
drive to another at 3:40 in PartitionMagic, vs. 5:38 using a tar pipe in
Linux. The downside is that the copy seems to be doing a semi-raw copy
followed by (if necessary) a resize, meaning that fragmentation is
maintained on the copy.

• The Boot Magic boot loader: this utility manages the booting of multiple
operating systems. In principle, it is much like LILO; when installed to a
partition, it resides on a FAT partition and re-directs the boot process to
another partition. It is graphical in nature, however, so may be more user
friendly in operation than LILO. Boot Magic, like LILO but unlike OS/2's
Boot Manager, does not require the allocation of its own partition.

• The ability to manage (but not create) IBM Boot Manager partitions: this
may be of interest to OS/2 users and those who installed Boot Manager
using PartitionMagic 3.0x.

• File system conversion: FAT-16 file systems can be converted to FAT-32,
HPFS or NTFS (but not to EXT2). FAT-32 partitions can be converted to
FAT-16 partitions.

• Drive integrity checks: this performs operations similar to those done by
Linux's e2fsck or MS Windows' CHKDSK or SCANDISK.



• Operation from DOS or MS Windows: the OS/2 native executable has
been dropped, and there is no native Linux version. Linux users can
create a working system from Linux alone, however, as described below.

• Batch mode operation: a series of partition changes can be set up which
PartitionMagic will then run in sequence. This allows you to do other
things while your computer re-configures itself unattended. In case of an
error, the batch execution will halt.

• “Wizards” to advise and help guide the user through processes such as
balancing free disk space, adding a new operating system, etc.

In addition, PartitionMagic has a handful of other features that are of interest
primarily to DOS or MS Windows users. For example, it has the ability to move
applications from one FAT partition to another and diagnostics to help
determine the best possible partition sizes for optimum FAT allocation block
use. 

PartitionMagic is available for download directly from PowerQuest's web site
(via an on-line secure order form that asks for a credit card number) and as a
retail package. I purchased my copy via the web site, using my existing 2.02
license number to obtain the upgrade pricing. The entire download is on the
order of 50MB, so you will need several hours and/or a fast net connection if
you choose to get it in this way. I received ample documentation in Adobe PDF
format.

The program is definitely geared towards MS Windows users: when burned to
CD, the files create a CD that includes an auto-install program when inserted
into a MS Windows machine. Some of the more esoteric features seem to be
present only in the MS Windows version of the program, but the one of
greatest potential interest to Linux users, Boot Magic, requires a FAT partition
to operate in the first place, so this is not a major loss. The installation files
include a directory called “linux” which contains two disk images that can be
copied to blank 1.44MB floppies. The first of these is a bootable OpenDOS 7.01
disk image with the main DOS PartitionMagic 4.0 executable and a few support
files, including a Microsoft mouse driver. The second image includes help files
for accessing PartitionMagic's help system from the first disk. Thus, those with
Linux and no other OS can still use PartitionMagic by booting this floppy. It can,
of course, be customized with other mouse drivers or features. Some of my
testing, described below, was done with this DOS disk and some of it was done
with MS Windows. Aside from the “Wizards”, the DOS and MS Windows versions
of the program perform similarly.



PartitionMagic in Operation

I ran PartitionMagic through a series of tests on my system. I have a SCSI-based
computer using a Symbios 53c860-based SCSI host adapter with a secondary
adapter based on the Initio 9100UW chip. I ran tests with my SCSI hard disks
attached to each of these adapters, with similar results both times. My hard
disks include a 4GB Micropolis UltraSCSI, a 2GB Micropolis Fast SCSI-2 and a
2GB IBM UltraSCSI. Since one of the 2GB drives was used entirely for Linux
swap space and temporary storage for CD-ROM creation, I was able to use it as
a test-bed drive, copying file systems from the other two drives and modifying
them with impunity. Most of my tests involved copying, moving and resizing
EXT2 and HPFS partitions, although I also tried some operations on FAT-16 and
FAT-32 partitions.

In operation, PartitionMagic 4.0 was relatively easy to use and worked as
advertised—some of the time. Unfortunately, it produced errors of one sort or
another on my system at least as often as it functioned correctly. Sometimes
the errors would appear at the end of an operation and not have any apparent
ill effect. A few times they would appear at the beginning of an operation,
causing it to abort. Other times, particularly with copy operations, errors would
occur at the end of an operation and abort it. I also encountered file system
corruption on some tests, particularly tests involving HPFS. The one time I
encountered ext2fs corruption, e2fsck was able to correct the problems.

For a number of reasons, I am certain that my physical hard drive system is not
to blame for these problems. First, I did a low-level format on the IBM drive I
was using as a test bed, so I am certain it was free from physical defects.
Second, PartitionMagic 4.0 reported no errors on the drive when it was
configured to check for them prior to each operation. Third, problems occurred
on both the IBM and the Micropolis 2GB when I reconfigured my system to use
it for the tests. Fourth, problems occurred with both the Symbios 53c860 board
and the Initio board as the host for the hard disks. Finally, problems did not
occur when I tried the same operations with PartitionMagic 2.02 (when they
were possible with that version of the program).

Thus, I am quite certain that PartitionMagic 4.0 has some serious bugs. These
bugs are so severe and so obvious that I find it hard to believe a reputable
company would ship a product knowing these bugs existed. Therefore, I must
conclude that PowerQuest did not know they existed (although I have now filed
extensive bug reports with them) and that something about my system was
turning up bugs in the software. Perhaps the peculiar drive geometry on my
first physical disk (1018 cylinders, 133 heads, 62 cylinders), produced by the
Symbios host adapter, has something to do with it; or maybe PowerQuest
simply did minimal testing with SCSI systems; or perhaps their testing used



relatively simple partitioning. My drives each have at least two partitions and
problems tended to turn up more frequently with three or more partitions.

In addition to the out-and-out primary function bugs, Partition Magic has a
number of limitations, some of which would not even occur to many people
except that the program really can do so much. Specifically:

• The Boot Magic program had problems booting a FreeBSD partition on
my system.

• The program has problems with some Linux-created partition tables.
Specifically, and according to the PartitionMagic documentation, Linux's
fdisk creates extended partitions with logical partitions listed in order of
creation, which may not be the same as the order of the partitions
themselves (e.g., sda6 may appear before sda5). PartitionMagic 4.0 will
choke on such partition tables, though version 2.02 doesn't seem to have
any problem with them.

• There appears to be no way to merge the contents of two partitions; if you
have, say, /usr and /usr/X11R6 on two partitions on one drive, you can't
turn them into one partition from within PartitionMagic (although you can
increase the size of /usr, reboot to Linux, copy /usr/X11R6 to the enlarged
/usr, reboot to PartitionMagic, delete /usr/X11R6 and increase the size of /
usr again).

• Re-sizing or moving a Linux boot partition will render the partition
unbootable (assuming LILO is being used to load a kernel image off that
partition). Linux users would do well to ensure that they have a floppy
with a kernel image, and also a full-fledged Linux boot system with a text
editor to handle any necessary changes in /etc/fstab after moving, adding
or deleting partitions.

• The batch nature of the operations can result in some truly brainless
series of operations. If you enter a partition resize operation, then decide
you want to perform a different resize on the same partition, both will
most likely be executed, although one would do. Fortunately, you can
clear the entire queue of changes; however, you can't delete a single
operation.

Recommendations

The above may appear to paint a rather bleak picture—to some extent, this is
justified. The types of operations performed by PartitionMagic are inherently
dangerous and bugs in such a program are a serious matter. On the other
hand, my suspicion that the bugs manifest due to something specific about my
system may mean that others may have better luck. PowerQuest also has a
good reputation for producing reliable software, so I have high hopes that they
will correct these problems. Assuming this happens, PartitionMagic 4.0x will be



an excellent program and a must-have utility for anyone managing multiple
operating systems on one computer. The $69.95 price may seem a bit high, but
if you have ever spent most of a day juggling partitions around using tape
backups, removable disks or some similar mechanism, you'll recognize the
appeal of being able to do that quickly and on the fly. If you own a previous
version of PartitionMagic, the $29.95 upgrade price represents a true savings
for any Linux user, since it radically improves on the program's utility for the
Linux community.

The best possible way to use PartitionMagic seems to be as an exclusive means
of managing partitions on a drive. Because of incompatibilities such as the one
mentioned above with Linux's fdisk, I recommend using PartitionMagic to
create all the new partitions on a disk. If you find yourself with a disk that
PartitionMagic won't handle because of Linux-created logical partitions, you
may be able to use Linux's fdisk to delete the offending partitions and recreate
them in the correct order. If you're careful to create new partitions of precisely
the correct size, your partitions will still be usable, but I strongly recommend
backing them up before attempting such an operation.

If version 4.01 is not available by the time you read this, I recommend waiting
for it unless you are in immediate need of Partition Magic's abilities. If you must
use version 4.0, use it cautiously: back up all data before changing a partition,
then run e2fsck, CHKDSK, or SCANDISK on any modified partitions immediately
thereafter. (You may need to specify the -f option to e2fsck to be sure it runs on
the partition.) A spot check of the integrity of the data after a modification
would also be a good idea. Of course, these suggestions also apply to any
program that does low-level operations on a hard disk, but given the problems I
encountered with PartitionMagic 4.0, they apply even more strongly to it.

Roderick Smith can be reached via e-mail at rodsmith@fast.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Calendar Programs

Michael Stutz

Issue #57, January 1999

Mr. Stutz introduces us to a digital method for keeping track of appointments
and those important dates in our lives. 

I am obsessive about keeping track of things. I used to get a free calendar each
year from the local phone company. It was the perfect interface for all my
appointments—a slim, spiral-bound calendar that I kept on my desktop and
used to record any upcoming appointments, as well as mark the birthdays of
my friends and family. Every year around the holidays I'd get a new calendar
and dutifully re-transcribe the birthdays and other annual appointments into
the new calendar. 

A few years ago, the phone company decided to stop sending out these free
calendars, but fortunately I had found a better way. By using cal and calendar

programs, I can leave all my old analog date books behind.

Different versions of these utilities exist. Originally part of the BSD utilities, a
GNU version called gcal with some advanced features has been released. I will
focus this tutorial on the original BSD programs since they're widely available,
as well as mention some other related programs at the end of the article.

You'll first want to find out if you have these programs installed on your system
by typing:

which cal

If which returns a full pathname of the cal program, it is installed. If instead you
are immediately returned to a shell prompt, then you will need to obtain and
install this program. You can use which again to see if you have the calendar

program installed as well; they are different programs and you will need them
both. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


If you use the Debian distribution of Linux, both programs are available in the 
bsdmainutils package. Otherwise, consult your distribution, or search the Linux
Software Map at http://www.linuxresources.com/apps.html.

Using Calendar

calendar is a basic reminder service. It reads a file called calendar in the current
directory and prints lines which start with today's or tomorrow's dates. The
calendar file is a text file that can be created and edited with any text editor.

This program is more powerful than it may seem at first. The general format for
a calendar file entry is the month and day to the immediate left, followed by a
tab and the reminder text. The month and day can be skipped—each line
beginning with a tab carries the same month and day value as the line
preceding it.

There is quite a varied syntax for the month and day. To demonstrate, let's
make up a sample calendar file and look at it line by line:

10/31   Johnny's Halloween party
Friday  Garbage day
Nov. 20 Dentist appointment, 9:30am
20/11   Mandatory staff meeting, 10:00am
January Happy new year!
        Have you made your resolutions yet?
18 *    Rent's due

Let's imagine that today is Friday, October 31, 1997. At the shell prompt, type: 

calendar

With the sample calendar file in your current directory, you will see this output: 
10/31   Johnny's Halloween party
Friday  Garbage day

The 10/31 in the first line tells calendar to print that line if it is October 31 (or
the day before), and the Friday in the second line tells it to print (you guessed it)
every Friday. 

As you can see, you can also use an abbreviated form of writing out the month,
as in the example line starting with Nov. 20. Now, on the fourth line, the mm/dd
format is reversed—in this case, calendar figures that out and will print it on
the 20th day of November. It's probably not a good idea to keep records in this
format. If you were to write May 10th as 10/5, calendar will assume you mean
the U.S. convention of mm/dd and print that entry on October 5th.

If you have just the name of a month in the first column, calendar will print the
entry on the first of that month. If you eliminate that column altogether by
inserting a tab and some reminder text, calendar will print the line on the date



of the preceding entry. Thus, on New Year's Day, our example calendar will
output:

January Happy new year!
        Have you made your resolutions yet?

Finally, substituting an asterisk for the month will print that entry on the stated
date each month. In our example, a reminder to pay the rent will be displayed
on the eighteenth of each month. 

Keeping Your Dates Separate

Since it is pre-processed by cpp, the C preprocessor, calendar recognizes
include files. This allows you to keep and use special lists, such as a personal list
of birthdays, without cluttering up your main calendar file. The calendar
program comes with a set of such files in /usr/lib/calendar/ to get you started:

• calendar.birthday: birth and death dates of many famous historical
figures

• calendar.computer: important dates in the history of computing
• calendar.holiday: known (and not-so-well-known) holidays
• calendar.music: important dates in music, especially mainstream rock-n-

roll
• calendar.christian: Christian holidays
• calendar.history: many historical events
• calendar.judaic: Jewish holidays
• calendar.usholiday: standard US holidays

When you use an include statement, calendar first searches the directory it was
called in, and then looks in /usr/lib/calendar/. Including this line in your file, 

#include <calendar.usholiday>

means calendar will first look in the current directory for such a file. If not
present, it will then check /usr/lib/calendar/, and if the appropriate file is found,
include it. 

One of the functions of my old paper calendar was to record and keep a record
of important events in my life. I was able to reproduce this function by keeping
this information in files named calendar.yyyy, such as calendar.1997. Looking
through the files in order gives me a chronological record of major events in my
life, and if I ever wanted to see what I was doing around today's date in a
certain year or years, I could add include statements for the appropriate
calendar.yyyy files in my calendar file.



Automating Calendar

You can run calendar whenever you like, but it might be more useful to put it in
your profile file (~/.bash_profile if you use the bash shell). Then calendar will
run each time you log in to the system.

I keep my personal calendar file in the doc/etc/ subdirectory of my home
directory, so I would include the following line in my profile:

cd /home/m/doc/etc/; calendar; cd

Putting the same line in your .bashrc file (again, only if you use the bash shell—
others are different) also works to run calendar each time you start a shell. 

Sometimes even this isn't enough—if your machine is on all the time and you
haven't been starting any new shells or xterms, you might miss a reminder. So
you could schedule a cron job to run calendar each day, e-mailing the output to
you as a reminder.

Using cal

The cal program displays a text calendar. If you call it without any options by
typing:

cal

the current month will be displayed on the terminal like this (assuming
September, 1998): 

  September 1998
 S  M Tu  W Th  F  S
       1  2  3  4  5
 6  7  8  9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

It's pretty no-frills, but can work on any terminal. To get a calendar of the whole
year, call cal with the year as argument. 

cal 1950

Typing: 
cal -y

will print a calendar for the current year. 

cal can also display any arbitrary month. If you want to see the month of
December 1999, for instance, use:



cal 12 1999

in which case you'll see: 

December 1999
 S  M Tu  W Th  F  S
          1  2  3  4
 5  6  7  8  9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Other Calendar Programs

While cal is quite useful for creating simple calendars, sometimes when printing
you might want a nicer output. pcal is a program that creates very nice
calendars in PostScript. Its options are very similar to that of cal. It is available
from http://garbo.uwasa.fi/unix/pcal.html.

Other programs that handle calendar functions in a more graphically-intense
way (and can be used only in X) include ical, at http://www.research.digital.com/
SRC/personal/Sanjay_Ghemawat/ical/home.html and plan, found at http://
www.in-berlin.de/User/bitrot/plan.html. There are many variants of the basic
UNIX calendar programs—check the Linux Software Map for more.

With this overview of the power and flexibility of these simple calendar
programs, you too can leave your analog calendar systems behind.

Michael Stutz is a writer whose first novel, Sunclipse, is freely distributed under
GNU GPL copyleft—just like Linux—and is on the Web at http://dsl.org/m/doc/
lit/sunclipse.html. He can be reached via e-mail at stutz@dsl.org.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux as a PACS Server for Nuclear Medicine

Cheng-Ta Wu

Issue #57, January 1999

Linux is being used in a Taiwan hospital as a server for medical images and as a
firewall. 

Many Linux users are not likely to be familiar with nuclear medicine, but it plays
a major part in the medical field today. I am a physician and will describe my
experience with Linux in the Nuclear Medicine Department of Chang Gung
Memorial Hospital, Kaohsiung, Taiwan. I hope the information will be useful for
novice Linux users (I was a novice two and a half years ago). 

Before describing my Linux experience in nuclear medicine, I have to mention
the background of medical-image standards including PACS, Interfile and
DICOM. No standard existed among the image formats of different CT
(computerized tomography), MR (magnetic resonance) and gamma camera
vendors before 1985. After recognizing the need for standards to facilitate
multi-vendor connectivity and PACS (Picture Archiving and Communication
System), the American College of Radiologists (ACR) and the National Electrical
Manufacturers Association (NEMA) proposed the first standard ACR/NEMA 1.0
in 1985, ACR/NEMA 2.0 in 1988 and then ACR/NEMA 3.0 (well-known as DICOM
3.0).

DICOM 3.0 is the current standard, and almost all vendors implement DICOM
3.0 in their new product lines, although many other old image instruments are
still not DICOM 3.0 compatible. Another standard format in the nuclear
medicine field is Interfile. Like DICOM 3.0, Interfile is a specified file format, but,
unlike DICOM 3.0, Interfile is not a communication protocol. The network
protocol of DICOM 3.0 is built on top of TCP/IP, so DICOM clients can query/
retrieve image data from a DICOM server and can also store image data on the
server through the Internet if properly connected. Interfile is simply an interim
file format of nuclear medicine. If nothing else, it proposed a standard for
gamma camera vendors to follow, but what about the future? DICOM is the
best way to go. If you have an interest in medical image formats, please refer to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


the Medical Image Format FAQ (http://idt.net/~dclunie/medical-image-faq/html/
index.html), maintained by David Clunie, M.D., for further information.

In the Diagnostic Nuclear Medicine department, after intravenous injection or
oral ingestion of radionuclides, patients are put under a gamma camera to
have pictures taken. A gamma camera picks up gamma-rays emitted from the
radionuclides to make up the images. There are many gamma camera vendors
in the market. The following is a list of them and the operating systems they
use:

• Siemens: MacOS 7.x
• Elscint: OS/2
• GE, Picker, SMV, Toshiba and others: UNIX
• Other: Proprietary OS (Some old gamma cameras such as GE Starcam, old

Toshiba, et al.)

The network protocol for Macintosh is AppleTalk, for OS/2 it is NetBIOS and for
UNIX it is TCP/IP. Due to the prevalence of the Internet, all operating systems
used today also support TCP/IP. Network protocols for computers are used for
communication in the same way language is used by people. Under the same
network protocol, different computers can exchange data with one another. 

Chung Gung Memorial Hospital, Kaohsiung, Taiwan, is a medical center with
more than 1,000 beds. One IP address is assigned to the Nuclear Medicine
Department. We have three gamma cameras. The oldest one is the GE
STARCAM which uses a proprietary OS, one Siemens ICON triple-head gamma
camera and one Elscint Varicam dual-head gamma camera. The Elscint Varicam
is a brand new gamma camera, installed before I left the hospital.

After learning about Linux two and a half years ago, I realized it would be the
perfect server for gamma cameras. Since Linux is a UNIX clone, it offers TCP/IP
networking. In addition, Netatalk (AppleTalk protocol for UNIX) allows Linux
directories to be mounted by Macintosh, and SAMBA (SMB is NetBIOS over
TCP/IP) allows OS/2, Windows 95 and Windows NT to use the services at Linux
and vice versa. TCP/IP, AppleTalk and SMB (server message block) are all
available in Linux; thus, Linux can communicate with all gamma camera
computers except some old and proprietary ones. I will describe later how to
solve the problem of retrieving the image data from proprietary computer
operating systems.

At the time I set up Linux as a PACS server for our Nuclear Medicine
department, our Siemens ICON could export Interfile image files but didn't
offer the DICOM function. The Elscint Varicam offered DICOM functions and the
GE Starcam offered neither Interfile nor DICOM. Using the image translation



software GAMMACON from MITA, the problems of the proprietary image file
data were solved.

GAMMACON is a program that runs under the MS-DOS environment. It reads
and writes different proprietary, Interfile and DICOM image files to and from 8-
inch, 5.25-inch or 3.5-inch diskettes and the network or hard disk. GAMMACON
uses a security hardware key attached to the PC printer port to prevent
software piracy. After modifying the configuration file of the Linux DOS
Emulator, GAMMACON runs smoothly under Linux. Combined with the network
capacities of Linux, we could translate the GE Starcam image files archived on
3.5-inch floppy disks into Interfile, and then process them on the Siemens ICON
or the Elscint Varicam. Due to the limitations of GAMMACON, only one program
could be run at a time. The security hardware key is locked by GAMMACON.
After the needed programs are installed, Siemens ICON could easily mount the
Linux shared directories from the CHOOSER via Netatalk. Elscint Varicam OS/2
could also mount the Linux shared directories as a network disk (via SAMBA).
For other gamma cameras that use UNIX, such as Picker or ADAC, mounting the
directories via NFS is routine work.

To read the GE Starcam files off-line, I could bring the floppy disks from the GE
Starcam to Linux, then use GAMMACON to translate the GE Starcam files into
Interfile, DICOM or GIF format. It sounds perfect. Even for gamma cameras that
are not DICOM compatible, we still offer a convenient way to solve the image
file exchanges in nuclear medicine by using the specific functions of the
software from different vendors to process the images. Before I left Chung
Gung Memorial Hospital last year, I worked on the DICOM Query/Retrieve
(DICOM client) function on Linux—a hard job for me, since I have no
programming background. The Swansea University in Wales offers the DICOM
server service on Linux; perhaps others do too.

Finished? No, I mentioned earlier that one IP address is assigned to our Nuclear
Medicine department. I installed two NE2000 compatible cards in this Linux PC
PACS server and recompiled the Linux kernel to enable the IP masquerade
function. One network card is used with the IP address we were assigned and
the other network card is assigned to an internal network address. All the
gamma camera computers, the Macintoshes and the Windows 95 PCs in our
office belong to the internal network and can access the Internet seamlessly
through the Linux IP masquerade. The Linux IP masquerade forms a firewall to
prevent invasion from the Internet. The limitation of one IP address is no longer
present.

Combined with the Apache WWW server and mSQL, we use the GIF-format
nuclear medicine images converted from GAMMACON to make all the



diagnostic reports available as HTML documents available to the registered
medical doctors.

Hylafax is a free fax server for Linux, and it also supports many other operating
systems such as Macintosh and MS Windows. Several colleagues of mine are
quite happy with Hylafax, since they can easily send a fax from their PCs. You
may wonder why I didn't mention DNS or a mail server. Our hospital set a
proxy server to allow only the WWW browser to access the external world and
prevent hacker destruction, so we must exclusively use the mail server offered
by our hospital. They set the proxy and mail server to the same SUN Ultra
SPARC.

Is Linux difficult? No. Take me as an example. I was a total computer newbie
two and a half years ago, and yet I used Linux in my daily work. I am sure
others could do the same. I would like to thank all of the people who devote
their efforts to Linux and free software.

The author, Cheng-Ta Wu was a nuclear physician and is now in general
practice at Feng Shan, Kaohsiung County, Taiwan. He lives with his parents, two
brothers and a dog. He is interested in traveling, music and swimming. If you
come across him while he is traveling, please mention you are a Linux user. He
can be reached via e-mail at chengtaw@mail.euphoria.com.tw.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Caching the Web, Part 1

David Guerrero

Issue #57, January 1999

Improve your users' browsing and save your bandwidth by using proxy servers
to cache web pages. 

The web is everywhere. Everyone uses it. Everyone talks about it. But in this
less-than-perfect world, you know there are problems. Bandwidth is a problem.
Web document latency (the time a document takes to arrive at your browser
once its URL is requested) is a problem. As more of your bandwidth space is
used, latency of documents retrieved from the Internet increases. Bandwidth is
expensive, perhaps the most expensive element of an Internet connection. 

Despite the fact that the web is growing fast, the same documents get
requested and the same web sites are visited repeatedly. We can take
advantage of this to avoid downloading redundant objects. You would be
surprised to learn how many of your users read the NBA.COM web pages, or
how many times the GIFs from AltaVista cross your line.

Even if you know nothing about web caching, you are probably using it with
your web browser. Most common browsers use this approach with the
documents and objects you retrieve from the Web, keeping a copy of recent
documents in memory or disk. Each time you click on the “back” button or visit
the same page, that page is in memory and does not need to be retrieved. This
is the first level of caching, and the technique can be expanded to the entire
web.

The basic idea behind caching is to store the documents retrieved by one user
in a common location, and thus avoid retrieving the same document for a
second user from its source. Instead, the second user gets the document from
the common place. This is very important when you deal with organizations in
Europe, where most of the inbound traffic comes from the other side of the
Atlantic, frequently across slow links.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


The main benefit of this approach is the fact that your users' browsing is now
collaborative, and an important number of the documents your users retrieve
are served in a very small period of time. In a medium-sized organization (with
between 50 to 100 users), you can serve up to 60% of URL requests from the
local cache.

The difference between a browser cache and a proxy-cache server is that the
browser cache works for only one user and is located in the final user
workstation, while the proxy-cache server is a program that acts on behalf of a
number of web browser clients, allowing one client to read documents
requested by others earlier. This proxy-cache server is located in a common
server that usually lies between the local network and the Internet. All browsers
request documents from the proxy server, which retrieves the documents and
returns them to the browsers. It's the second level of caching in an
organization. Figure 1 shows this type of network configuration.

Figure 1. Proxy-cache Server Network Configuration 

A proxy-cache is not just a solution to the bandwidth crisis; it is also desirable
when a network firewall is needed to guarantee the security of your
organization. In this case, the proxy-cache sits on a computer accessible from
all local browsers, but isolates them from the Internet at the same time. This
computer must have two network interfaces attached to the internal and
external networks and must be the only computer reachable from the Internet.
Figure 2 illustrates such a configuration. The proxy-cache server must be
accessible only by internal systems to ensure that no one on the Internet can

https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f1.large.jpg


access your internal documents by requesting them from the proxy-cache. I will
discuss access control to the proxy-cache later in this article.

Figure 2. Proxy-cache Network Configuration with Firewall 

Multi-Level Web Caching

One step forward from this approach is the concept of a cache hierarchy,
where two or more proxy-cache servers cooperate by serving documents to
each other. A proxy-cache can play two different roles in a hierarchy,
depending on network topology, ISP policies and system resources. A neighbor
(or sibling) cache is one that serves only documents it already has. A parent
cache can get documents from another cache higher in the hierarchy or from
the source, depending whether it has more parent or neighbor caches in its
level. A parent cache should be used when there are no more opportunities to
get the document from a cache on the same level.

Choosing a good cache topology is very important in order to avoid generating
more network traffic than without web caching. An organization can choose to
have several sibling caches in its departmental networks and a parent cache
close to the network link to the Internet. This parent cache can be configured to
request documents from another parent cache in the upstream ISP, in case
they have one (most do). Agreements can be made between organizations and
ISPs to build sibling or parent caches to reduce traffic overload in their links, or
to route web traffic through a different path than the regular IP traffic. Web
caching can be considered an application-level, routing mechanism, which uses

https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f2.large.jpg


ICP (Internet Cache Protocol) as its main protocol. Figure 3 is an example of
how an organization can implement multi-level web caching.

Figure 3. Multi-level Web Caching Organization 

What's ICP?

ICP, Internet Cache Protocol, is a protocol used for communicating among web
caches. A lightweight protocol built on top of UDP, ICP is used to locate specific
web objects in neighboring caches. Most transfers of objects between caches
are done with the TCP-based HTTP protocol, but making the decision of where
to retrieve an object must be done with a simpler and faster mechanism. Other
information needed is which caches are down or have congested links.

One cache, in order to find the best location from which to download an object,
sends an ICP request packet to all of its siblings and parent caches, and they
send back ICP replies with a HIT or MISS code. A HIT code means this cache has
the object and agrees to serve it. A MISS code means it doesn't have the object.
Thus, the cache now knows who has the object it needs, and, combining this
information with other factors such as round-trip times of each response, can
perform the cache selection and make the request via HTTP to its choice. If all
the caches reply with MISS packets, it requests the document from its parent
cache. An ICP request/reply exchange should occur in a second or two, so the
latency increases this time for the browser, but this is usually not noticed by the
end user.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2628f3.large.jpg


If the object requested via ICP is small enough, it can be included in the ICP HIT
reply, like an HTTP redirect, but this is not a very common situation. Of course,
ICP is needed only in a multi-level cache environment with multiple siblings and
parent caches. Using ICP is not necessary in situations like the ones in Figures 1
and 2. When only one cache is involved, or when one cache always requests
documents from the same higher-level cache, ICP would only add unwanted
overhead.

To cache or not to cache?

At this point, we must realize that not all objects in the web are cacheables.
Most FTP files are, as well as most static web pages, but a large number of CGI-
generated web pages (dynamic documents) are not. This kind of document is
non-cacheable, because it is different each time you request it. Two good
examples of this kind of object are access counters and live database queries.
Caching a reply from a flight reservation system is senseless, since the next
query will most likely return more up-to-date values. Other kinds of documents
which should not be cached include SSL documents (securely transmitted
documents).

OK, cache, but for how long?

Even if you do not have a proxy-cache server, you must be aware of the effects
other proxy-cache servers are causing on the Internet. You may be publishing
information on your web server that other caches are storing and serving for
more time than you probably want. This is particularly true if you periodically
update your site and it's important to you that a final user never gets out-of-
date pages or graphics.

A document in a cache server can have three different states: FRESH, NORMAL
and STALE. When an object is FRESH, it is served normally when a request for it
arrives without checking the source to see if the object has been modified since
its last retrieval. If it's in NORMAL state, an If-Modified-Since GET request is sent
to the source, so the cache server downloads the object from the source only if
it has changed since its last retrieval. A STALE document is no longer valid, and
it's retrieved from the source again.

Normally, when a web server sends a document, it adds an HTTP header called
Last-Modified containing the date the object was created or last modified. This
data is used by cache servers to heuristically calculate how much time may
pass for the object to still be considered FRESH. Usually, a proportion of the
time elapsed between the date the document was last modified and the date
when the document was received is used. A normal proportion is 10% to 30%
of this time. If this proportion is set to 20%, a document modified 10 days ago
will remain in the cache only two days before being checked for changes.



Webmasters who frequently update their information need more control over
the time their documents remain unchecked in web caches. In this case, the
Expires HTTP header in the documents served by your server can be used to
indicate when this document must be dropped by any cache server. This
header explicitly gives the caches the expiration date of a document. A valid
RFC1123 time format should be used with this header, for example:

Expires: Mon, 25 Aug 1997 10:00:00 GMT

This header can be generated easily in CGI scripts or the mod_expires module
included in Apache 1.2. For example, the following Apache directives (in a
<Directory> </Directory> or a .htaccess) would do it: 

ExpiresActive On
ExpiresByType image/gif A432000
ExpiresByType image/jpeg A432000
ExpiresByType text/html A10800

The Expires header is activated for all subsequent documents with a value of
five days for JPEG and GIF images and three hours for HTML documents. 

If you have documents which should never be cached in any server or browser,
use the HTTP header called:

Pragma: no-cache

Of course, a cache may expire an object sooner, based on site configuration,
lack of free disk space, LRU (less recently used) policies, etc., but it can never
cache an object beyond its Expires time. 

Next month, we will discuss Squid, the best free software solution for building
proxy-cache servers.

Resources

David Guerrero is a system and network manager for the Spanish Ministry of
Education and Culture and an independent consultant. He has been using
Linux since the .98plNN days. When not working, he likes to spend time with his
love Yolanda, travel, play guitar and synths, or go out with his “colegas”. He can
be reached at david@boe.es.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2628s1.html


Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux for Macintosh 68K Port

Alan Cox

Issue #57, January 1999

“I don't care if space aliens ate my mouse” or a case study in both the technical
and human issues in porting the Linux OS to a new M68K target platform. 

Several barriers to a Linux for Macintosh 68K port exist. The first is that Apple
does not want other operating systems on its machines. While almost all of the
workings of a PC can be learned from books, almost nothing is written about
the Apple Macintosh. Sometimes Macintosh specifications and technical notes
fill in the blanks; at other times, it is necessary to apply a great deal of
guesswork and experimentation to figure out the hardware. 

The second barrier is a human one. Most Macintosh machines were not sold to
the technical market, and average Macintosh users aren't terribly interested in
a “real operating system” for their computers. Nevertheless, a sizable
technically oriented Macintosh user community does exist, with a lot of
Macintosh hardware to go with it (probably more than any other non-Intel
Linux platform). A further reason has been provided by Apple, whose quaint
advice for owners of 68K machines now appears to be “buy a new computer”.

The third barrier to a Linux port is less obvious and is hidden by a lack of
documentation. Certain folks have speculated that embarrassment is the main
reason for Apple Computer releasing so little documentation. In general,
Macintosh platforms have positively Stone Age design features. For example,
the interrupt controllers on a Macintosh II are a pair of 6522 VIA chips, intended
for use with the 8-bit 6502 processor. Bad hardware design makes for poor
performance, unless carefully handled. The complete lack of DMA (direct
memory access) is even less helpful. Apple seems to think no DMA is a feature
on most machines and actually have a technical note stating “I used to be a
teenage DMA junkie”, which seems to be a justification of their rather comical
hardware design.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Getting Started

To get a port started, the first item needed is hardware. I had most of this (a
5MB MacII, cast off from the office as too slow for practical use). Initially, I felt
safe helping to work out the directions for the Linux port, as this system lacked
an MMU (memory management unit) and was therefore unable to run any
proposed Linux port.

Rob Pelkey started on some very basic Linux work for the Macintosh, but
needed a boot loader to load the Linux OS and kick it off. On #linux on the
LinuxNet IRC network, Jes Sorensen (the keeper of Linux68K), I and several
others got into a few discussions about the port and what would be required.
After a lot of digging, we managed to gather some basic information on the
Macintosh68K, then filled in further areas by investigating the excellent
detective work the OpenBSD/Macintosh team had done in getting BSD limping
along on Macintosh machines. Further information came to light from the Linux
on OSF Mach port sponsored by Apple. We discovered that Apple continued to
use the same 8-bit microcontrollers, or emulations of them, and had not
redesigned the systems materially for the new processor.

Everything seemed perfectly fine. I had a Macintosh box to laugh at (and we
used it occasionally to fail to duplicate problems Macintosh users had with
CymruNet), we could kick ideas around and I had no MMU in my Macintosh, so I
couldn't possibly help write any code.

By this point, Rob's effort had stalled badly, as he lacked the time to write the
boot loader needed to run Linux and was working on passing courses and
other sundry items. No worry—either someone would eventually take over the
project, or he would finish his courses. Then Frank Neuman sent me an MMU
for the MacII and someone else donated a pair of Ethernet cards—whoops, no
more excuses.

Learning MacOS

Having fitted the MMU to the Macintosh without blowing it up, I tried to get
MacOS to run with virtual memory. This is supposed to be simple—click on the
memory tool and select 32-bit, virtual memory on. But no, my memory control
didn't have a 32-bit option, let alone a virtual memory one. I stared a bit, then
checked on a more modern Mac downstairs to be sure I had the right screen.
The other Macintosh which was running the same MacOS version had the
required option; mine didn't.

This was my first experience with the horrors of the Mac. While UNIX says “I'm
sorry you can't do that”, MacOS has exactly two error messages. It either goes
“eep?” or the setup box is simply not there until 12 other unidentified items



have been installed and three apparently unrelated dialog boxes have been
completed. Mine was an error of the latter category.

Apple shipped the MacII with the ability to upgrade to include an MMU chip;
therefore, they sensibly shipped it with a system ROM incapable of running
with the MMU enabled. Brilliant—just don't design anything mission-critical,
please. Fortunately, Apple had concealed on their web site a small tool which
patches the ROM entry points so that it can run in 32-bit mode.

Okay, so all I had to do was download the tool, install it and be done—not so
simple. To get the program, I needed the Ethernet to work. I ended up using 
kermit to transfer 700KB of Ethernet installer onto the Macintosh. After four
hours of fighting with the completely alien Macintosh archiver tools, I had the
machine talking AppleTalk shares to a Linux box using Netatalk, as well as
insight into why Macintosh people meeting a PC for the first time look as if
they'd just discovered alien life forms.

An hour later, I had figured out how to unpack Macbin files and the Macintosh
was in 32-bit mode and admitted the MMU was present and functional.

Building and Booting Linux

The next stage in the operation was to figure out how to boot a Linux kernel
image on the Macintosh. NetBSD and OpenBSD use a boot loader which loads
a.out format executables into the memory of the Macintosh, shuts the
Macintosh down, moves it to address 0 and jumps to it. I quickly decided I
didn't want to write a boot loader. The OpenBSD loader was almost pure
MacOS wizardry at a level far beyond my abilities. Not to worry—it soon
became apparent that the OpenBSD loader could be persuaded to load Linux
too. A true loader could wait.

The next problem was building a Linux kernel image that would link and (while
most likely not doing anything useful) at least serve as something to feed the
OpenBSD booter. Linux is built using the GNU tool chain, which supports the
building of cross compilers. It is thus possible to compile and build 680x0
binaries on an ordinary Intel-based PC. It took a couple of builds to get gcc and
the GNU binutils generating almost the right code. Linux a.out executables
have a two-byte header different from the OpenBSD ones, and the OpenBSD
boot loader checked those bytes. Rather than rebuild the entire tool chain
again, I wrote a simple tool to fix the headers.

Most of Linux/M68K was quite content to build for a Macintosh target. I filled in
everything that complained with dummy routines—for Mac keyboards, mice,
display, etc. until it all compiled. Because of the well-designed abstraction
layers in the Linux/M68K kernel, this was quite easy to do. I now had a



completely useless, do-nothing, Macintosh kernel that the OpenBSD loader
would load and which then promptly crashed the machine as I expected.

The Linux/M68K project had faced up to the challenges of supporting multiple
types of 680x0-based computers within the same port, well before I got
involved. As a result of the need to support both the Amiga and Atari systems,
clear layers of abstractions are present. Adding an additional M68K target
consists mostly of filling in platform-specific blank fields. A port to a completely
new processor would have been far more challenging than this one.

For the Macintosh case, I filled in various, mostly blank function handlers. After
finally getting the thing to link, I ended up with a kernel that was hard-coded for
a 5MB 68020-based Macintosh with FPU and a display at 0xF9000000. It had no
interrupt controllers, no disk controllers, no keyboard and no mouse. Anything
else I could find was also hard coded. However, it linked and that was the
important thing. Having done a bit of reading up on the innards of the console
drivers (and much interrogation of Jes), I wrote a fairly simplistic back end for
the generic console driver on the Macintosh. As it turned out, the very simplistic
approach reflected the Macintosh hardware I had, which was a completely
unaccelerated bitmapped display supporting 640x480 in 4-bit colour.

Paint It Black

A Linux 68K kernel starts with a partially shared piece of initialisation code
written in 680x0 assembler and using almost all the most Gothic and peculiar
features of the architecture. This initialisation code also sets up the memory
management and caching, and touches everything no one normally knows
about. The 68020, 68851, 68881 combination of chips used in the Macintosh II
is obsolete and Motorola didn't carry documentation on this device. I did know
two things which, in theory, were enough to debug and figure out what was
going on. First, I knew the base address of the screen memory; second, I knew
the address that the code would begin executing. The very first routine I put in
the startup code painted the screen a revolting blue colour. After about 15
boots and some staring at the source code, I had a Macintosh that booted to a
blue screen, waited a short while, then crashed.

In many ways, this was the single hardest item to get going. When dealing with
a completely unknown system environment with no idea what is around the
code, debugging is extremely tricky. Real commercial hardware people use logic
analysers—I didn't have that option. I learned several things in the process;
notably, that Macintosh screen memory is not located where the hardware
claims it is until the MMU is set up. I also made the amazing discovery that the
rounded corners on the Macintosh display are drawn in software.



Over the next few weeks, the Macintosh went through an assortment of
debugging stripes and coloured patterns as I inched a few lines at a time
through the initialisation assembler code, fixing it bit by bit and gradually
mapping in the needed hardware. Eventually, the kernel hit the magic 
start_kernel function in the C code without crashing on the way.

Consoling Yourself

Hitting start_kernel is the beginning of the easy road; at least on a PC, text-
mode consoles are now present instead of stripes. So theoretically, hitting
start_kernel on a Macintosh should have meant that getting the kernel to
initialise a text console and begin showing useful debugging information was
close. Nothing could have been further from the truth.

After several attempts to get the console up, I wrote some routines to print
penguins and Macintosh logos on the screen (this was easier than text). Each
significant point the kernel reached added a penguin to the display, and a
failure point before the console came up printed a given number of burning
Macintosh logos. While hardly as good as print statements, this was good
enough to rapidly locate several bugs in the processing of options passed by
the boot loader (little things like apparently having 0KB of memory upset the
Linux memory initialisation). The code would get to the beginning of the
console setup and die.

To get past this point, I had to fill in support for the 4-bit packed pixel displays
that were used by the Apple Macintosh “Toby” display card. The generic
bitmapped console drivers for the 680x0 port supported a wide variety of pixel
formats and naturally excluded the one I needed.

Had I known at the time, I could have simply switched the machine to Mono in
the display preferences, but I didn't know that action physically switched the
card into a monochrome mode. Adding 4-bit packed pixel wasn't too difficult. I
left the somewhat scarier 2-bit packed pixel support for later, hoping someone
else would write it. The console code is also very modular on the 680x0, and
these console layers (abscon, fbcon) are now used by most non-Intel ports. It is
reasonable to assume that it will be driving all the ports by the 2.3 kernel series.

The machine still crashed mysteriously and all evidence pointed to a structure
getting stamped on. I put guard values on either side of it and checked that
they were not overwritten; I moved the structure in memory; I tried everything I
could think of in order to stop it from being apparently corrupted. (No joy, no
change.) After a bit of head scratching, I added code to check that the values
were okay at boot and at initialisation of each subsystem. The value was wrong
at the start of the C code; it was also wrong at the start of the assembler.



This looked as if the boot loader was corrupting data, yet this made no sense,
since the loader would corrupt the same location, not pick on a specific variable
wherever it might be located. Eventually, I used the GNU objdump tools to look
at the binary I was loading. It turned out the GNU linker was at fault and in
some places was loading a completely bogus address for relocation.

A new linker and the magic words “Calibrating Bogomips” appeared on the
screen, followed by a hang, then much rejoicing. In many ways, the time lost to
the linker bug was not that bad. Eyeballing the code in search of the mystery
bug, I had fixed some twenty or thirty other serious bugs in a vain attempt to
find the illusionary real bug.

I wasn't too worried about the Bogomip calibration hanging. It is hard to
calibrate time before the interrupt routines and, in particular, the timer
interrupt routines have been written. I commented it out and after a short
while the rest of the code booted to the point of saying “Panic:unable to mount
root file system”. A reasonable situation, as it had exactly no device support
except the screen.

Filling In the Blanks

Getting the machine to the point where everything appears to boot is by no
means a completion of the first steps of a porting project. This stage is when
you finally appreciate the real problems and the scale of work remaining to be
done.

The most important items to fill in were those that dealt with the most basic
system resources: interrupts, memory and the I/O buses. The interrupts and
several I/O subsystems are handled by a pair of 6522 VIA chips, 8-bit controllers
from the Stone Age. These chips themselves are documented and their
locations are known, even if some of the connections to their I/O pins are a
mystery. A certain amount of mapping work and other detective information
showed that the VIA chips provided the all-important system timer ticks,
handled the keyboard at an extremely low (and at the time undeciphered) level
and provided interfaces for external interrupts from the bus controllers.

Several other pins appear to do things such as turn the Macintosh off. Even
now, we don't know what everything on the VIA chips does or if all the pins
have a real use. It also turned out I got the easy end. The later Macintosh
machines replace the second VIA with a device known as RBV (RAM-based
video), which contains a bad emulation of a VIA chip and various other
components in one piece of glue logic.

Basic interrupt handling on a Macintosh is relatively clean. A great deal of
attention has been paid to keeping interrupts that need a fast response at a



higher priority than time-consuming processes. That works well under MacOS,
but Linux tends to take rather too binary a view of interrupts, especially in the
drivers. Certain interrupts are wired in strange ways, presumably to save
components; the SCSI interrupt, for example, is wired through a VIA but is
effectively upside down compared to the other interrupt sources. Apple saved
an inverter by using as an interrupt signal the fact that the VIA can handle
either direction of state change.

I ended up with two layers of interrupt handling, which were mostly hard
coded. Unlike a PC, the Macintosh interrupts are hard wired. Only the Nubus
(plug in) cards change positions, and they all share one interrupt which sets bits
in a VIA register to indicate the real interrupt source.

Nubus proved quite entertaining. The documentation is weak and written from
the viewpoint of someone building a card for a Macintosh. It took about a week
before the boot-up code would scan and report a list of which Nubus slots were
occupied and the names of the devices. Once it worked, the Nubus turned out
to be an extremely well-designed system with features much like PCI. Each slot
is allocated a set of memory resources and can raise an interrupt. A ROM
allows the OS to read each device for identification and driver information. The
ROM also contains other “useful” data, including icons for the device. At the
moment, these are not visible under Linux, but the intention is to support /
proc/nubus/[slot]/icon.xpm at some time in the future.

Mapping Ethernet Cards

The Daynaport card I had been given was very close to several PC designs. The
8390 Ethernet chip and block of RAM on it made that quite clear. There are,
however, 224 possible locations for the chip and memory within each Nubus
slot space.

Finding out where the device was hidden required building a collection of
kernels which searched the 24 bits of address space looking for two things.
First, it looked for areas of memory which could be read and written; second, it
looked for areas like those which had the additional property of giving different
results when read back. The 8390 chip has several control registers; by playing
with these, it is possible to reliably identify the chip. (This same code is used to
probe for NE2000 and WD80x3 cards in Linux for PC.) On the Macintosh, the
RAM was easy to find but the 8390 did not show up.

Having played with the RAM behaviour a bit, I discovered that the memory was
mapped to alternate 16 bits in its address space. That is, if you wanted to read
it, you had to read two bytes, skip two bytes, read two bytes, etc. A bit of further
experimentation revealed that the Ethernet controller registers occurred every



fourth byte, that the RAM occurred every other pair of bytes and was 16-bits
wide and that the Ethernet controller saw the 16-bit wide memory as 8-bit wide.

This sort of technique worked for mapping a large number of devices and
address spaces and helped to discover the location of additional devices in the
Apple I/O spaces. We still don't know enough to drive the Apple sound chip and
the “Integrated Woz Machine” (floppy disk controller), but we do know where
they are located.

Rooting for NFS

When you need to start testing a system by booting into user space, you need a
file system. The NFS root file system is extremely attractive for this and has
been used for most ports. The NFS (Network File System) makes transaction
requests at the level of files rather than disk blocks. This has the saving grace
that errors in the new port cause transactions to get rejected. If you are trying
to debug a new port and a SCSI controller driver at the same time, you will
instead spend much of your time reformatting and reinstalling the disk from
which you are attempting to boot. Using NFS limits the possibilities for errors
and makes it easier to add and edit files as you attempt to make the machine
work.

The initial installs were done with a set of tar files, known as “watchtower”, for
the M68K. Watchtower is extremely outdated but is small and easy to unpack.
Since the goal was to get a shell prompt, the age of the binaries was not a
serious worry. Watchtower also demonstrates another strength of Linux/M68K
—all the ports run the same binaries. Instead of having to cross compile and
debug all the binaries for the Macintosh, I was unpacking and booting a file
system set up for installation on a Commodore Amiga.

With a few modifications to the drivers and several small bug fixes to the kernel
code, the applications began to run. As most of the code we needed to add for
a new M68K platform was drivers and setup code, once things began to work,
most applications sprang to life. It took a couple of tweaks to get floating point
to always behave, but once done, I was able to boot the machine fully multi-
user but without keyboard, mouse or hard disk support.

It took almost a month before anyone else got the kernel to boot on their own
machine. A lot of debugging removed some rather bad assumptions that had
“escaped” the code cleanup. Gradually, other MacLinux 68K machines began to
pop into being. This is an extremely important step for any project, as it allows
others to contribute effectively. Michael Schmitz wrote the SCSI drivers and
much of the keyboard and mouse support. He is now adding IDE. Numerous
others have tested and debugged code on many varieties of Macintosh and
even made it work on some.



Conclusions

While any new port is difficult, the structure of the Linux M68K kernel tree is
very well-designed and delivers on its intention to allow easy portability
between M68K targets. Several sections of this code are rightfully being used
cross-architecture as well as cross-platform.

Making a free software port work seems to be about having a small number of
people willing to take the project the first half of the way. Once this point is
reached, the project gathers momentum of its own accord, even when it is
something as pointless as Linux on a Macintosh II.

Lack of documentation is only a hindrance. It will not prevent determined
people from exercising their basic rights to use and operate property they
bought and now own. Instead, it reflects badly on the vendor who is trying to
be a nuisance. If the only documentation on the keyboard interface is entitled
“Space aliens ate my mouse”, someone will still find it.

Always be the second operating system ported to an undocumented platform.
The sterling work done by the OpenBSD/Macintosh team was a huge help to
the Linux project. I'm also happy to say that even though half of the world may
spend their time arguing on Usenet advocacy groups, the relationship between
the Linux and BSD Macintosh teams has always been one of mutual co-
operation. Together, we advance our detective work and knowledge of the
Macintosh platforms to the good of all Macintosh users dumped and orphaned
by Apple.

Thanks

Alan Cox started hacking on Linux 0.95. He's since discovered he doesn't like
working for small non-Linux companies and especially not for big ones, so he
now runs Building #3, a Linux contracting company primarily working for Red
Hat software. He can be reached at alan@snowcrash.cymru.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2996s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Creating a Web-based BBS, Part 1

Reuven M. Lerner

Issue #57, January 1999

Ready to create your own virtual community? Here's how to begin. 

For a period of time last year, the buzzword on the Web was “community”.
Everyone wanted to build a virtual community, allowing people to interact on-
line in much the same way as they interact in real life. 

While virtual communities were (and are) overhyped, it is true that the Internet
has produced a number of such on-line groups, many of whose members have
never met in person. If you're reading this magazine, you probably participate
in at least one e-mail list, chat system or Usenet newsgroup. Indeed, Linux
would probably not be the success it is today were it not for communities of
developers and users sharing information with each other via the Internet.

Several methods are available for creating an on-line community, beginning
with the oldest and best-known, an e-mail list. Setting up a mailing list is
relatively easy, and only minimal resources are necessary to keep a list running.
Another popular option is a Usenet newsgroup, which uses a similar format but
a different distribution mechanism than e-mail.

Still another option is a web-based bulletin board system. While such systems
are neither as flexible nor as powerful as Usenet or e-mail lists, they do offer a
number of advantages. They are resistant to spam, can be easily integrated into
other aspects of a web site and give visitors to the web site a chance to
participate in discussion without having to register. Many commercial web sites
now offer bulletin boards for their users, in the hopes of turning their site into a
truly interactive and two-way experience, rather than another distribution
medium for their content.

Starting in this issue, we will take a three-part look at how to create a simple
bulletin board system of our own. This project was suggested by reader Dwight
Johnson and also influenced by my creation of an “At the Forge” home page

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


that will include examples of the programs presented in these columns, as well
as a central place for readers to discuss the programs.

This month, we will look at the basic guts of the bulletin board system to be
used on the ATF site. As you will see, I have decided to keep the software and
the BBS very simple, without certain advanced features such as hierarchies and
threading. However, it should not be difficult to add these features to the
software, or to use this as a base for a more advanced system. Next month, we
will add enough features to make this a serviceable BBS. Finally, in the third
part of this series, we will look at ways in which we can add a number of useful
features to the system.

Designing the BBS

The first consideration is the look and feel of the BBS, since that will force our
hand on a number of other issues. As I indicated above, it is my goal to keep
this software as simple as possible. I decided to keep discussions in a non-
hierarchical manner. Each message belongs to a single thread within the BBS.
We will not keep track of replies or allow sub-threads. Messages within a thread
will be presented in chronological order, from the newest message to the
oldest.

The user will thus have several possible options at any given point: starting a
new thread, posting a new message to an existing thread, listing the current
threads, or looking through the messages in one thread.

While I briefly considered storing messages in ASCII text files, I quickly decided
to use a relational database. A database makes it easier to handle future
expansion, since more features can be provided by adding one or more
columns to a table. Databases also free us from having to worry about file
formats, locking and other problems which inevitably occur when we use ASCII
text files.

My database of choice is the “mostly free” MySQL. The programs will be written
in Perl and will use Perl's database interface, known as DBI. See the “Resources”
sidebar for pointers to information about any or all of these.

If you have been following this column over the last few months, you may be
surprised to see that I have implemented it using simple CGI programs. I could
have used mod_perl, a module that embeds a Perl binary inside of the Apache
HTTP server. I could also have used HTML::Embperl, the templating language
we explored in this column's previous two installments.

However, reality is often the compelling factor and the web space provider I use
has not yet installed mod_perl. These programs should run just fine under



Apache::Registry, the modules for mod_perl that provide emulation of the CGI
standard.

Creating the Tables

If we are going to store information in a relational database, the first technical
decision involves the database itself. What information do we want to store,
and how do we want to store it?

Because we are storing messages and threads, I designed the system with two
tables, ATFThreads and ATFMessages. Each message, including information
about the author and the posting date, is stored in ATFMessages. Each message
in the table points to a single thread in ATFThreads, allowing us to sort
messages by thread.

Here, for instance, is the definition of ATFThreads:

CREATE TABLE ATFThreads (
    id SMALLINT UNSIGNED AUTO_INCREMENT
        PRIMARY KEY,
    subject VARCHAR(255) NOT NULL,
    author VARCHAR(60) NOT NULL,
    email VARCHAR(60) NOT NULL,
    text TEXT NOT NULL,
    date DATETIME NOT NULL,
    UNIQUE(subject)
 );

Each thread is stored in a single row of the database, uniquely identified by its 
id column, which we define to be a SMALLINT UNSIGNED. (We are thus allowed
65,535 different topics, which should suffice for now.) By declaring the column
to be AUTO_INCREMENT, we are asking MySQL to give the id column a new
value each time we insert a new row. By declaring it to be the PRIMARY KEY, we
indicate that the id column will uniquely identify a row. 

The other columns are fairly self-explanatory: subject contains the subject of
the thread, while author and email contain the thread creator's name and e-
mail address, respectively.

Each thread has an opening message that starts the discussion; it is stored in
the text column in a column of type TEXT. TEXT fields can contain amounts of
text larger than the 255-character maximum given to us by VARCHAR columns. 
VARCHAR columns are stripped of trailing whitespace, sparing us from at least
one housekeeping chore when working with the database.

Finally, we give each thread a date column in which we record the creation date
and time with a DATETIME element. We also ensure that the human-readable
subject line for the thread is unique with the UNIQUE keyword at the end of the



table definition. This prevents us from having two threads named “Problems
with MySQL”, for example.

Now that we have seen how to create ATFThreads, we can define ATFMessages.
The two are quite similar, the main difference being a reference to a thread ID:

CREATE TABLE ATFMessages (
    id MEDIUMINT UNSIGNED AUTO_INCREMENT
        PRIMARY KEY,
    thread SMALLINT UNSIGNED NOT NULL,
    subject VARCHAR(60) NOT NULL DEFAULT
        "No subject",
    date DATETIME NOT NULL,
    author VARCHAR(60) NOT NULL DEFAULT
        "Mr. Nobody",
    email VARCHAR(60) NOT NULL DEFAULT
        "atf@lerner.co.il",
    text TEXT NOT NULL
 );

Once again, we create a column with an auto-incrementing primary key named 
id. Different tables can have identically named keys just as different hashes
can. If we are referring to both tables in a single query, we can distinguish
between the two by using the table.column syntax, as in ATFMessages.id and 
ATFThreads.id. 

Notice how we have used the DEFAULT keyword to assign default values to
each of the elements. Truth be told, the way the database-handling programs
are written makes it unlikely we will ever see these defaults. (Empty strings are
passed to the database as empty strings, rather than as NULL values. To get a
true NULL, we must pass an undefined scalar.) However, it is always a good
idea to build multiple checks into your programs just in case one of the other
levels does not work in the way you expected. This can also help us track down
problems; if we notice that many users are identified as “Mr. Nobody”, we can
assume something has gone wrong with our posting software.

We can create the tables by entering the above SQL commands at the
interactive mysql prompt. Once they have been created, we are ready to start
working on the programs.

Common Program Elements

The programs in this project share a number of elements. Each starts with a
series of use statements:

use strict;
use diagnostics;
use CGI;
use CGI::Carp qw(fatalsToBrowser);
use DBI;



The first, use strict, prods us into making our variable references explicit, either
by creating them as lexicals (with the my statement) or with the use vars

statement. I have chosen to create all variables as lexicals, but if you were
interested in putting common variable definitions into an external file, you
might want to consider making them globals. 

Next, we invoke use diagnostics, which tells Perl to give us information from the
perldiag manual page if and when there are problems with our program. I find 
use diagnostics to be an invaluable debugging tool when working with web
applications, since it often points to a foolish mistake I have made. This, along
with use strict and the -w flag, makes programming in Perl much less error-
prone.

We then load the CGI::Carp module, which overrides the built-in Carp module
with routines of its own that make for more accurate messages in our HTTP
server's error log. We also import CGI::Carp::fatalsToBrowser, which sends an
error message to the user's browser if and when an error occurs. This allows us
to use the standard die statement without having to worry about whether we
have already sent the HTTP “Content-type” header. Sending a message to the
user's browser without such a header almost always causes an error message
to be displayed.

Each program in the BBS also defines a number of variables: $database, 
$server, $port, $username and $password. These variables are used to log into
the database with DBI; by setting them at the top of the program, you can
modify them as necessary without having to change hard-coded strings.

Each program also turns off buffering, so that information is sent to the user's
browser as soon as the program sends it to the appropriate file handle.
Normally, saying

print "<P>Hello</P>";

does not send <P>Hello</P> to the user's browser. Rather, it places the string in
a buffer. When the buffer is filled, its contents are shipped off to the user's
browser. This is more efficient, since the computer can copy a lot of data at
once, rather than spending its time entering and exiting from the routines that
handle file operations. However, it also means the user must wait to see
results. We can turn off buffering by setting the built-in Perl variable $|: 

$| = 1;

Finally, each program connects to the database with the standard DBI routine: 
my $dbh =
 DBI->connect("DBI:mysql:$database:$server:$port",
 $username, $password);



If the connection succeeds, we receive a database handle (dbh) in return and
store it in $dbh. If $dbh is false, however, we should report an error, since it
means the connection did not work: 

die "DBI error from connect:", $DBI::errstr
    unless $dbh;

We can do the same thing when preparing a query. The result from $dbh-

>prepare is a statement handle (sth). When defined, $sth is an object that itself
accepts methods. When $sth is undefined, the statement preparation failed: 

my $sth = $dbh->prepare($sql);
die "DBI error with prepare: ", $sth->errstr
    unless $sth;

We can execute our statement with $sth->execute, which works in much the
same way as $dbh->prepare. The difference is that the result code is a simple
value, rather than an object: 

my $result = $sth->execute;

In some programs, we test the value of $result and use die to report an error: 
die "DBI error with execute: ", $sth->errstr
    unless $result;

In others, we use $result to decide whether to continue with the program or to
print a more user-friendly error message: 

if ($result)
{   # do something
}
else
{   # indicate an error
}

Finally, we always disconnect from the database at the end of our programs: 
$dbh->disconnect;

This is not truly necessary, since DBI and Perl close all such connections when
the program exits. However, if you are running with -w, a message will be
inserted into your error log each time a program exits without disconnecting
from the database nicely. We do this in order to keep our error log free of
spurious details. 

Creating and Viewing Threads

Since each message must belong to a thread, we will first look at how a thread
is created. A thread is no more than a single row in the ATFThreads table, so
our thread-creation program will be fairly simple.

The three listings referred to in this article are available for anonymous
download at ftp.linuxjournal.com/pub/lj/listings/issue57/3193.tgz. They are not
printed here due to space considerations.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/057/3193.tgz


Add-thread.pl (Listing 1 in the archive file) uses the contents of an HTML form
to insert a new row into ATFThreads. However, it performs some additional
manipulation as well, to ensure that the data will be retrievable in a useful way.

We can use either single or double quotes around text strings in SQL queries.
Double quotes are used by DBI for parameters and thus exclude the possibility
of using quotation marks. We therefore use single quotes around our text
strings. However, this raises the issue of how to pass single quotes to the
program. A simple solution is to perform a substitution on each of the text
strings generated by the user. For example:

$value{"subject"} = $query->param("subject");
$value{"subject"} =~ s/\'/\'\'/g;

We can do even better by using the built-in $dbh->quote method, which quotes
a text string for us. $dbh->quote decides whether to use single or double
quotes and also handles special characters, such as quotation marks and
question marks, with ease. We use a foreach loop to quote each of the
elements: 

# Get the form parameters
foreach my $element (qw(subject text author
    email))
{
$value{$element} =
    $dbh->quote($query->param($element));
}

Once we have done this, we can be sure that $value{$element} is suitable for
insertion into the database. 

We also perform several substitutions on the “text” HTML element, which
contains the text that starts the thread. To begin, we remove all HTML tags, so
as to prevent people from linking to all sorts of crazy sites. While it might be
desirable to allow people to include HTML in their postings, it could also lead to
chaos if formatting commands were inserted. I decided to be slightly draconian
and disallowed all HTML. We do that by removing everything between < and >:

$text =~ s/<.*?>//sg;

Notice how we use Perl's non-greedy operator *? instead of * to remove the
HTML tag. If we were to use * and the line had two HTML tags, Perl would
remove everything from the first < through the final >. We use the /s modifier
to tell Perl that . includes all characters, including new lines. Without /s, \n
would not be included in ., which means a two-line tag such as 

<a
 href="http://www.cnn.com/">



would be ignored. 

We then make sure new lines are treated correctly, first removing multiple new
lines and then replacing them with HTML paragraph markers:

$text =~ s/\r\n/\n/g;
$text =~ s/\r/\n/g;
$text =~ s|\n\n|</P>\n<\P>|gi;

Once it has performed all of these tasks, add-thread.pl creates the SQL query
that will insert the new thread into ATFThreads: 

my $sql = "INSERT INTO ATFThreads ";
$sql .= " (subject, text, author, email, date) ";
$sql .= "VALUES ($values, NOW())";

We insert the date of the thread for future use, but also so that we can sort the
threads in the order of their creation. 

The program which lists threads, appropriately named list-threads.pl (Listing 2
in the archive file), uses a SELECT query to retrieve all of the rows from
ATFThreads:

my $sql =
"SELECT id,subject FROM ATFThreads ORDER BY subject";

After performing an $sth->execute, it checks to see how many rows were
returned. If none were returned, we indicate that no threads have yet been
created. If threads exist, we iterate through the results with $sth->fetchrow,
which places the query result into @row. We can pull out the elements of @row

and print a list: 

if ($sth->rows)
{
print "<ul>\n";
while (my @row = $sth->fetchrow)
{
 print "<li> ";
 print "<a href=\"/cgi-bin/view-thread.pl?";
 print "$row[0]\">$row[1]</a>\n";
}
print "</ul>\n";
$sth->finish;
}

Users are presented with an alphabetical list of thread titles, each of which is a
hyperlink to view-thread.pl (Listing 3 in the archive file), described below. As
you can see, the argument to view-thread.pl is the id value of the thread, the
defined primary key. 



Conclusion

Next month, we will complete the design and implementation of our basic BBS,
adding the ability to create messages and search through the system. Until
then, consider dropping by a working implementation of this software at http://
www.lerner.co.il/atf/, where you can trade ideas with other readers of this
column.

Resources

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. His book Core Perl will be published
by Prentice-Hall in the spring. He can be reached at reuven@lerner.co.il. The
ATF home page, including archives and discussion forums, is at http://
www.lerner.co.il/atf/.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/3193s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Letters to the Editor

Various

Issue #57, January 1999

Readers sound off. 

Thanks for the On-line Reference

Over a year ago, you ran an article by John Little (“Setting up a Sun
SPARCstation”, October 1997) on getting a SPARC up and running on Red Hat
4.2. Shortly after reading it, I came across an old SPARC IPX at the local
computer graveyard that essentially needed a CMOS battery to function
properly. I snapped it up and never got around to installing Linux on it until
recently. Since I've moved, I couldn't find the original article and was overjoyed
when I found it in its entirety on your web site. That information along with the
Red Hat Powertools 5.1 disc allowed me to get the IPX up and running in under
an hour.

Thanks again for all the great information with no fluff! —Leon Hauck
leon@progcpu.com

Future of Linux Followup

I just received the October issue of Linux Journal and was alarmed to discover
that I had omitted from my “Future of Linux” report the most important
“Resource” link of all: that of the on-line version of the article itself, which I
continue to update almost weekly:

http://pobox.com/~newt/reports/linux-19980714-top.html

Recent developments include Linux product announcements from Caldera
(Netware), Citrix and Sybase; a San Francisco Chronicle report that the last of
the large databases without a Linux port, IBM's DB2, will be announced for
Linux by the end of September; and news about Dell's Linux pre-installations, a
number of Open Source announcements and a new Linux quarterly in French: 
Linux Magazine France.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


More important, perhaps, is the fact that the dozens of links embedded in the
text (e.g., for the Top 500 supercomputer list or the AP1000+ multi-computer)
are available. —Greg Roelof snewt@pobox.com

Re: July 1998 Issue

It's ironic that when I was reading Griffin Caprio's letter in the October issue, I
had the July issue in my briefcase to take to work in order to photocopy two
articles for some coworkers. Please do not let the prospect of big circulation
lead you to water down the content of LJ. I have seen other computer
magazines go that way, and abandoned them. LJ is now the only one to which I
still subscribe. —Tom Kuiper kuiper@jpl.nasa.gov

Office Suite Review

In the article “Applixware vs. StarOffice” that appeared in the October LJ, Mr.
Butzen states that his criteria for testing included portability, specifically the “...
ability to import and export files to Microsoft Office.” While he touched on this
issue briefly with his experience exporting to Word 6.0, he neglected a major
issue in this regard.

To my knowledge, neither suite's presentation package will export to Microsoft
PowerPoint format. While this may seem like a minor point to some, it is a huge
issue for those of us who use presentation software as a routine part of our
jobs. Most of us are not fortunate enough to have access to PC/projection
systems running Linux and the appropriate presentation software, let alone
fortunate enough to find someone willing or able to create 35mm slides from
either of these formats. While exporting presentations to Windows Meta Files is
supported, this is a poor substitute compared to having the project saved in a
format that is easily edited and displayed, particularly when one is far from his
friendly Linux box.

I have been a StarOffice 4 user for about six months. While I find it a bit slow,
the major factor preventing me from completely abandoning Microsoft
Windows95 and Microsoft Office is StarOffice's inability to export presentation
files to a more “universal” format. I'm surprised that with Linux's popularity in
the scientific community and the common use of presentation software in
those endeavors, this subject has not received more attention. —Frank Lynch,
MD flynch@statecollege.com

October STP Column

I enjoyed the October “Stop the Presses” column, but felt it was rather dated by
the time it hit my mailbox, given the recent actions by Oracle, Sybase and
IBM(DB2). Have you considered running the column on the LJ web site instead,



so as to keep the column from becoming too out of sync with current Linux
events?

I've been working in the database industry for the past 2 1/2 years now, so I
naturally feel that the database market will be critical to Linux's future success.
As such, I've kept a close eye on the Informix, Oracle, Sybase and IBM
announcements of late. Although the Informix-centric information was most
excellent, another article covering the recent adoption of the Linux platform by
all the major database names would be most welcome. (I'd be interested in
finding out whether my own suspicions about the meaning of these trends are
shared by others.)

Regardless, I'm planning on photocopying the “Stop the Presses” article and
posting it outside my door as the latest salvo in my long-running Linux-PR
campaign I've been waging within my company.

Many thanks, and keep up the good work! —Peter Kuklaf ruviad@coil.com

We do sometimes put the “Stop the Presses” column on the web as soon as it is
written, usually in our on-line e-zine Linux Gazette. However, that did not
happen for this particular column —Editor

Redirecting to Console 9

In my previous letter you published in the “Letters to the Editor” column, I
referred offhand to “redirecting output to Console 9, as described in a previous
issue of Linux Journal”. I have received quite a few inquiries as to which issue
that was in and how to do it.

The issue was #31, the column was “Novice to Novice: Keyboards, Consoles and
VT Cruising” by John M. Fisk and the page was 17, the section heading “Putting
that Unused VT to Work”. However, you don't have to look up that issue, as it is
quite simple. Just add the following line to /etc/syslog.conf:

*.*        /dev/tty9

and all your syslog messages are sent to console 9 as well. 

Thanks, Linux Journal, for publishing that tip back in November 1996. It has
made a lot of system administration tasks easier. —Cynthia Higginbotham
cyhiggin@pipeline.com



Intel and Red Hat

I have been using Linux since 1992 and have built up a successful business
providing offices with an effective cheap alternative to expensive Microsoft
servers and products. Up until the beginning of this year, it did not matter
which distribution you used; everything worked just fine. Okay, each
distribution worked slightly different, but they all used the same libraries and
kernel. When I read in the computing press that the big software houses were
starting to support Linux, I knew that before long, Linux would rival MS on the
same level for both back end and desktop.

However, within a few weeks of Intel buying a stake in Red Hat, I read that
some products will work only with the Red Hat version of Linux. We must stop
this now, or in two years we will have a situation of Intel-Hat becoming the next
Microsoft with an 85% stake in the Linux market. Last week I installed a mail,
Samba and web proxy server into an office in London. I was asked, “Is this Red
Hat you are installing?” I said “No, it is Linux.”

I believe we must push for a common standard. Any product released for Linux
must work on all distributions. Please don't let Intel-Hat muscle their way in or
we will be in the same position in two to three years as we are with Microsoft
now. —Robert Weeks robert.weeks@csfp.co.uk

Review of Applixware vs. StarOffice

I read LJ here in Germany and have often read good reviews in your magazine.
Anyway, this special review “Applix vs. StarOffice” by Fred Butzen in the October
issue is somewhat incorrect.

StarDivision released StarOffice 4.0 some time ago, and three service packs
have already reached the users. Since 4.0, they are no longer using Motif but
their own StarView GUI which has a Windows look and feel. Speed, features and
reliability have all been improved greatly since the 3.0 version. By now, the
Linux StarOffice 4.5 preview release is out and can be tested. This preview got
released even before the other 4.5 preview releases had been shipped. You can
even buy an official version of StarOffice 4.5 including the handbook and a
sheet with notes about the differences between the Windows and Linux
versions. They are actually selling the 4.0sp3 version now, with the guarantee of
sending you the new 4.5 CD-ROM as soon as it is no longer a preview/beta
version. —Holger Lehmann lehman_h@informatik.fh-hamburg.de

Archive Index Issue Table of Contents 

    Advanced search 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Copyright © 1994 - 2019 Linux Journal. All rights reserved. 



    Advanced search 

1998 Atlanta Linux Showcase

Norman M. Jacobowitz

Issue #57, January 1999

One of the most notable aspects of this year's show was the variety of
attendees, over 2000 in all. 

The 1998 Atlanta Linux Showcase was held October 23 and 24 in downtown
Atlanta, GA. Thanks to Greg Hankins and the rest of the Atlanta Linux
Enthusiasts, it turned out to be yet another tremendously successful Linux
gathering. 

One of the most notable aspects of this year's show was the variety of
attendees, over 2000 in all. Visitors spanned the gamut from faithful Linux
geeks to the merely curious. Coupled with the wide variety of exhibitors and
speakers, these guests made the 1998 ALS one of the most diverse crowds ever
for a Linux show.

Among the 60 participating vendors were most of the usual suspects, such as
Red Hat Software, Caldera, Debian, S.u.S.E. and SpellCaster. Adding to the
excitement of the show was the presence of a few noteworthy newcomers.
Oracle gave Linux users a sampler CD-ROM of their database system, and
Informix also presented their database applications. Corel showed off both the
NetWinder and WordPerfect 8 word processor for Linux. San Mehat, NetWinder
developer, even showed off his pet project—a ten-processor Beowulf cluster
that he carried around in one hand. Even Schlumberger had a booth where
they talked about their smart card embedded with the Linux OS (see “Muscle
Flexes Smart Cards into Linux” by David Corcoran, Linux Journal, August 1998).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/3195f1.large.jpg


The show was tied together with a one-gigabyte backbone set up by Cabletron.
Registration was run on Linux-based PCs. In fact, one Microsoft employee we
talked to felt very much in the minority. Hopefully, he ordered a Cobalt Qube or
NetWinder to take home.

Other exhibitors included Jeff Bates and Rob Malda of slashdot.org. The
GNOME team was out in force, showing us the fruits of their labors. Miguel de
Icaza gave a talk on the GNOME project. Several retailers were represented,
such as Linux Mall, Linux Central and the Linux General Store.

Many leaders of the GNU/Linux revolution were on hand. Eric S. Raymond was
there making his always-brilliant philosophical observations about the power
and importance of Open Source software. Also present was Richard M.
Stallman: the man who can be said to have started it all.

As expected, a few important announcements were made, in particular by
keynote speakers. Allen Miner, Vice President of Strategic Business
Development at Oracle Corporation, gave the first keynote speech. Mr. Miner
reasserted Oracle's commitment to Linux and announced several key
partnerships with other Linux vendors. Look for Linux to figure more
prominently in Oracle's future.

Dr. Michael Cowpland of Corel talked about the future of his company's
relationship with Linux. He also announced that Word Perfect 8 for Linux would
be available as a free download for personal use in the near future. The rest of
Corel's productivity applications should be available on Linux by early 1999.
Corel also recently announced plans to team with Red Hat to port more
software to their NetWinder.

The surprise hit of the show was the caffeinated Penguin Peppermints handed
out by LJ representatives, including yours truly. Folks lined up three rows deep
at the booth to pick up these treats.

https://secure2.linuxjournal.com/ljarchive/LJ/057/3195f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/3195f1.large.jpg


To no one's surprise, this year's Atlanta Linux Showcase was yet another
testament of Linux's growth towards complete world domination. As the list of
independent software vendors, value-added resellers and retailers supporting
Linux grows each day, the outlook for the future of Linux is quite optimistic.

Norman M. Jacobowitz is a freelance writer and marketing consultant based in
Seattle, Washington. He can be reached at normj@aa.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

New Products

Amy Kukuk

Issue #57, January 1999

Applixware 4.4.1, FootPrints v 2.2, Linux Office Suite 99 and more. 

Applixware 4.4.1 

Applix, Inc. has announced the release of Applixware 4.4.1 for the Linux
platform with a new filtering framework that has been optimized for MS Office
document interchange and Y2K compliance. Applixware includes Applix Words,
Spreadsheets, Graphics, Presents and HTML Author. This Linux version also
includes Applix Data and Applix Builder as standard modules. Applixware for
Linux is available directly from Applix and from its partners, including Red Hat
and S.u.S.E. The product is available for $99 US.

Contact: Applix, Inc., 112 Turnpike Road, Westboro, MA 01581, Phone:
508-870-0300, Fax: 508-870-0300, E-mail: applixinfo@applix.com, URL: http://
www.applix.com/.

FootPrints v 2.2

UniPress Software, Inc. has announced the release of FootPrints version 2.2, a
web-based help desk software package. FootPrints is designed to utilize the
Internet to track problems and solutions and make that information available
to users over the Internet or Intranet. This version includes e-mail access (not
requiring access to the web) and a facility to load existing data into FootPrints
projects. Version 2.2 includes a web forms-based Data Import Facility which

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


allows existing data to be imported into FootPrints projects. The existing data
can be in a database, spreadsheet or any other source. The FootPrints Starter
Pack (including three licenses) is priced at $1995. Quantity, site license, reseller
and educational pricing are also available.

Contact: UniPress Software, Inc., Phone: 732-287-2100, E-mail:
info@unipress.com, URL: http://www.unipress.com/.

Linux Office Suite 99

nux Office Suite 99 

S.u.S.E., Inc. has announced the release of Linux Office Suite 99 which includes
a spreadsheet, word processor, presentation graphics, database, fax program
and other business applications. The product includes Applixware 4.4.1 and
integrates Applixware with the powerful ADABAS D 10.0 database system,
enabling users to import data from the ADABAS D database into Applix
Spreadsheets. It also contains the KDE and GNOME graphical desktops, S.u.S.E.
fax, the personal edition of the backup utility ARKEIA 4.0, the GIMP graphics
program and many other features. Suggested retail price is $79.95 US.

Contact: S.u.S.E., Inc., 458 Santa Clara Avenue, Oakland, CA 94610, Phone:
510-835-7873, Fax: 1-510-835-7875, E-mail: info@suse.com, URL: http://
www.suse.com/.

Etherminal J

IGEL LLC has announced the release of Etherminal J, a thin client desktop
device. Etherminal J incorporates Netscape Communicator version 4.05 and a
complete set of UNIX connectivity tools in its own flash memory. Storing and
running these software modules locally keeps network bandwidth
requirements at a minimum. IGEL's Flash Linux is a compressed UNIX-
compatible, flash memory accessible operating system. It is a POSIX-
conformant, multi-threading, multi-user operating system. Based on the Linux
kernel, it offers the largest number of available device drivers and applications.
It supports Internet and Java. The list price for Etherminal J is $800 US.

Contact: IGEL*USA, 31 Stonecroft Dr., Suite 105, Palmer, PA 18045-2812, Phone:
610-258-4290, Fax: 610-258-1289, URL: http://www.igelusa.com/.

DupliDisk

Arco Computer Products, Inc. has announced the release of the DupliDisk-
Direct, a real-time backup device. Due to its small size and unusual design,
which allow it to be plugged directly into one of the computer's onboard IDE



controllers, the DupliDisk-Direct requires neither a PCI nor an ISA bus slot. The
DupliDisk is a RAID 1 device capable of mirroring up to two pairs of IDE, EIDE or
U/DMA drives of any capacity. If a hardware failure disables one of the
mirrored drives, the DupliDisk automatically shifts operations to the
functioning drive. Users have the choice of either a bay-mounted or rear-
mounted external panel for the visual display. The product is priced at $250 US.

Contact: Arco Computer Products, Inc., 2750 North 29th Ave., Hollywood, FL
33020, Phone: 954-925-2688, Fax: 954-925-2889, E-mail: arco@arcoide.com,
URL: http://www.arcoide.com/.

CommuniGate Pro Server

Stalker Software, Inc. has announced its commercial release of CommuniGate
Pro, a unified messaging server which supports multiple platforms.
CommuniGate Pro communication and access modules provide all types of
messaging services required for today's applications. The SMTP module sends
and receives messages via the Internet using ESMTP with DSN and
multichannel queuing. The POP and IMAP modules implement the standard
POP3 and IMAP4rev1 protocols as well as most known extensions to these
protocols. The HTTP module supplements these modules with web access to
user e-mail, eliminating a need for mailer applications on client computers. The
web interface is customizable to include anything from logos or banner
advertisements to company announcements.

Contact: Stalker Software, Inc., 655 Redwood Highway, Suite 275, Mill Valley, CA
94941, Phone: 415-383-7164, Fax: 415-383-7461, URL: http://www.stalker.com/.

WebSENSE

Apexx Technology, Inc. has announced the release of WebSENSE web filtering
software, simple file sharing and spam filtering software for the TEAM Internet
100 series family. These features provide customers with the complete tool set
to control and manage Internet usage. The integration of WebSENSE with TEAM
Internet enables small businesses to control Internet browsing by blocking,
monitoring and filtering individual web browsing to non-business-related web
sites. Simple File Sharing allows TEAM Internet to act as a simple networking
server on the LAN, giving employees the ability to retrieve, store and
collaborate on files. Spam filtering software automatically filters unwanted e-
mail and helps small businesses eliminate expensive network bandwidth while
reducing employee time spent reviewing and managing unproductive material.
The TEAM Internet solution is based on the Linux kernel. Pricing starts at $1695
US.



Contact: Apexx Technology, Inc., 506 South 11th Street, Boise, ID 83702, Phone:
800-767-4858, E-mail: sales@apexxtech.com, URL: http://www.apexxtech.com/.

Parallel Computing Toolkit

Wolfram Research has introduced parallel computing support for Mathematica.
The upcoming Parallel Computing Toolkit will add parallel programming over a
network of heterogeneous machines to the long list of programming paradigms
supported in Mathematica. It implements many parallel programming
primitives and includes high-level commands for parallel execution of
operations such as animation, plotting and matrix manipulation. The Parallel
Computing Toolkit builds on Mathematica's symbolic programming language. It
is written entirely in the Mathematica language and uses Mathematica's
standard MathLink protocol to communicate between any number of
Mathematica kernels.

Contact: Wolfram Research, Inc., 100 Trade Center Drive, Champaign, IL
61820-7237, Phone: 217-398-0700, E-mail: info@wolfram.com, URL: http://
www.wolfram.com/.

Correction

In the November issue's “New Products” column, it was incorrectly stated that
Interbase 5 for Linux was free. (The beta version was a free download.) The
correct price of the product is available by contacting sales@interbase.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Best of Technical Support

Various

Issue #57, January 1999

Our experts answer your technical questions. 

umask Trouble

I'm trying to use umask to set permissions in a directory, but it doesn't allow
me to set execute. I use

umask a=rwx

and when I create a new file the permissions are -rw-rw-rw-. 

Can you give me a quick explanation of this command? Thanks. —Ernesto
Jardim, ernesto@ipimar.pt

umask doesn't set permissions; it uses a mask to clear existing file permissions.
The umask is also used by the shell to set initial file permissions on a newly
created file. Specifically, permissions in the umask are turned off from 0666.
The default umask is commonly 022 (in octal notation). In binary it is 000 010
010 which is equivalent to ----w--w-. When a file is created, the default
permissions are rw-rw-rw- (666) and after the umask is applied, they will be rw-
r--r-- (644). To set permissions, use the chmod command.

IDE/ATAPI Support?

I have two technical questions that I can't seem to solve by reading HOWTOs.

1) Has anything been done for the IDE/ATAPI version of the Iomega Zip drive?
Every HOWTO I have read seems to cover only the SCSI and the parallel port
versions.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


2) I have an HP ScanJet 5P scanner, with complementary Symbios one device
SCSI controller. When I boot Linux, it says it doesn't detect any SCSI hosts. Is
this normal and what is the reason behind it? —Henk Verleye, henk@sophis.be

1) Newer kernels (like 2.0.35) support IDE/ATAPI removables. Just include IDE/
ATAPI FLOPPY support and recompile the kernel.

2) Frankly, I don't know if this type of SCSI controller is supported, but if it is,
make sure the ncr53c8xx SCSI driver is compiled into the kernel.

Switching Hard Drives

I have one hard drive for Linux Red Hat 5.0 and one for Windows and want to
switch them. Linux is on hda1 and Windows is on hdb1. hdb1 is the faster of
the two, and I want to move Linux to it and put Windows on hda1. I know how
to do the Windows part, but how do I duplicate everything on hda1 to hdb1?
hdb1 is a bigger hard drive and has more than twice the speed of hda1. —Jon,
LordShroom@hempseed.com

First boot Linux, then mount hdb1 under /mnt with mount /dev/hdb1 /mnt;
then, if one partition is all you need to copy, type the following:

cp -a --one-file-system / /mnt

Wait for the copy to finish, then type umount /mnt. If you have more than one
file system you want to copy, you have to repeat this for each partition. Now
you need to change /etc/lilo.conf so that LILO boots from hdb1 instead. 

Mounting a Zip Disk

I am using Red Hat 5.1 and am having some difficulty mounting a Zip disk
formatted in Windows 98. The file system is not FAT32; it is FAT16. I can easily
mount a Linux EXT2 Zip, but not the Windows 98 one. I'm not sure if I have the
relevant information in my FSTAB—maybe someone can tell me what I need.
I've used commands like:

mount -t msdos

I've tried many variations of this with no success. Is there something I'm
missing? The man mount help seems informative, but yields no solutions —
Edward Heshka, heshka@idirect.com 

The default partition used on a Zip disk under DOS/Windows is the fourth
partition. Don't ask me why! Add entries similar to these to your /etc/fstab:



/dev/sdc1 /zip ext2 noauto,rw,user,nosuid,sync
/dev/sdc4 /zipdos msdos noauto,rw,user,nosuid,sync,mode=0777

Make sure the mount points exist and you use the correct SCSI device. Check
the messages during bootup if you're not sure. Now you can mount a DOS Zip
disk with mount /zipdos and an EXT2 Zip disk with mount /zip. 

Sharing Directories

I'm fairly new to Linux. I have succesfully installed Red Hat Linux 5.1 on my
laptop and have configured X appropriately. I have made appropriate network
settings and I want to use network shares (i.e., directories) that exist in my
company's Windows NT domain. Any suggestions would be greatly appreciated.
Also, we use MS Exchange for our e-mail and I have had limited success in
configuring a POP3 client to hit the server. Thanks in advance. —William B.
Winslow, bill.winslow@atkearney.com

One word: SAMBA. You can find information on SAMBA at http://
www.samba.bst.tj/samba/samba.html. Also, read the review in Linux Journal of
John Blair's book SAMBA: Integrating UNIX and Windows to see if it is a
resource you are interested in using.

Shutting Down

I am using Red Hat 4.2. I would like to give a user who is not root the
permission to shut down the system. The man page says, “write the name of
the user in the file /etc/shutdown.allow”. Unfortunately, this has no effect, i.e.,
the user gets the message “must be root” after typing shutdown. —Thomas
Okon, okon@math.tu-dresden.de

The only way I know of for any user to correctly shut down a Linux system is to
be physically present at the keyboard and press ctrl-alt-del. This key sequence
has the effect of running shutdown from init(8). This is the default behavior and
all /etc/shutdown.allow does is to restrict ctrl-alt-del even more to specifically
named users.

Updating Web Site

I am using Red Hat 5.0. How can I write a script that compares two directories
recursively, one on the localhost, the other on an FTP site, then upload only the
newer files to the FTP site? I wish to easily update my web site which is getting
quite large and difficult to update manually. —Grim_Sweeper@softhome.net

The good news is the solution is already available. The bad news is that you will
have to configure it to fit your needs. I'm talking about the mirror package



available at ftp://src.doc.ic.ac.uk/packages/mirror/mirror.tar.gz. This is an
excerpt from the man page:

Mirror was written for use by archive maintainers but can be used by anyone
wanting to transfer a lot of files via ftp. Regardless of how it is called, mirror
always performs the same basic steps. It connects to the remote site, internally
builds a directory listing of the local target directory, builds one for the remote
directory, compares them, creates any subdirectories required, transfers the
appropriate files (setting their time-stamps to match those on the remote site),
creates any symbolic links, removes any unnecessary objects and finally drops
the connection.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

WWWsmith: Installation and Configuration of FreeBSD

Sean Eric Fagan

Issue #57, January 1999

Here's how to set up a web server using another freely available operating
system, FreeBSD, a high performance, mature, UNIX-like system. 

FreeBSD is a popular (and free) Unix-like operating system, available from the
Internet and on CD-ROM (chiefly from Walnut Creek CD-ROM). In this respect, it
shares much with Linux, which is admittedly more popular and better
documented. 

Unlike Linux, FreeBSD is (as the name implies) derived from the popular BSD
variant of Unix; many features considered standard with Unix these days
originated at the University of California, Berkeley. These features include
(among others) networking and long file names; the networking code, in
particular, is mature and high performance. (One of the busiest sites on the
Internet is http://wcarchive.cdrom.com/, aka ftp://ftp.cdrom.com/ aka ftp://
ftp.freebsd.org/ aka http://www.freebsd.org/; it runs FreeBSD and pumps out
data at an average of more than 2.5MB per second, every second of every day.)

In this article, I will describe the process of installing FreeBSD on a LAN, and
configuring it to work as a web server, all using free software. Although Unix is
not traditionally a user-friendly operating system, FreeBSD does have a usable
installation process (provided you read the documentation and have a rough
idea what you are doing) and requires very little maintenance.

Before installing FreeBSD, you need to be prepared. First, you need to know
how you will choose to install the system: via CD-ROM, NFS or FTP. CD-ROM
installs are the easiest and fastest; FTP is the most commonly-used. This
requires that the computer you are installing on have access to the Internet
(either via LAN or PPP/SLIP).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Hardware Requirements

FreeBSD needs at least an 80386-level processor, with at least 4MB of RAM and
about 150MB of disk space. Note that FreeBSD currently requires at least 5MB
of RAM for installation—but can get by with 4MB post-install. Most popular disk
controllers are supported, including (E)IDE and several SCSI controllers. The
machine I am using is a 33MHz 80486, with 16MB of RAM and a 202MB IDE
drive. It also has an UltraStor 34f VLB SCSI controller with a CD-ROM drive
attached, and a Novell NE2000+ Ethernet card, configured at IRQ 5 and 0x280.

For PCI systems, almost any DEC 21x40 and 21x41-based Ethernet card will
suffice, and both the Adaptec and NCR SCSI controllers are well-supported. The
NCR is considerably cheaper and is well-suited to low-load systems. There is
some debate as to whether the new versions of Adaptec's SCSI cards are worth
the money for high-end systems, due to recent changes Adaptec has made.
There is also new support for DPT SCSI cards, including their RAID controller,
which may be desirable in some circumstances.

Some IDE CD-ROM drives, and proprietary CD-ROM interfaces, are also
supported. The support for those is not as good as for the SCSI. This is true
because while a SCSI driver may be quite complex, the command set is very
standard, which is not yet the case for IDE CD-ROM drives.

You will also need a boot floppy. The boot image is available at ftp://
ftp.freebsd.org/pub/FreeBSD/<release>/floppies/boot.flp and on the CD-ROM
as /floppies/boot.flp. The release I used was 3.0-970522-SNAP. If you are
creating the boot floppy under a Unix-like system, you would use dd to create
the image. For example, under FreeBSD, type:

dd if=boot.flp of=/dev/rfd0a bs=18k

A similar command is used on other Unix systems. If you are creating the
floppy under MS-DOS, you will need the rawrite.exe file, which is located in .../
tools/rawrite.exe on both the FTP site and CD-ROM. Create the floppy by typing:

 ..     ools\rawrite boot.flp a:

I installed the 3.0-SNAP release, which is available on CD-ROM; it is essentially a
development snapshot, and hence isn't as stable or mature as the other
releases. 

Preparing to Install

Before beginning the installation, at least read the release notes. The
recommended files to read are INSTALL.TXT, README.TXT and RELNOTES.TXT,
all in the release's root directory.



Write down hardware information, such as the disk geometry (heads, sectors,
and cylinders)—although this is not truly necessary, it can be useful. Also the
configuration of any ISA cards, such as SCSI and Ethernet. Last, since the
machine is going to be on a LAN, you should write down the host name,
domain name, IP address, default router IP address and name server (DNS) IP
address; this will save you a lot of frantic searching later. Note that if you are
doing an FTP or NFS install, you need the same information.

Beginning Installation

Installation is begun in the same way as any other equivalent system: put the
boot floppy or CD-ROM in the drive. Press enter at the Boot: prompt; if you
don't type anything, it will time out and boot automatically.

First a scrollable menu is presented to let you decide whether or not to
configure the kernel. You can choose to skip the configuration step, or you can
enter either a visual or line-oriented configuration program. (I recommend the
visual mode, of course.)

The kernel configuration process allows you to disable or reconfigure most
device drivers; this is invaluable if you have a device card that is configured
slightly different from what FreeBSD has been told to expect. Some devices
require destructive probes (meaning that probing for one may confuse or
disable another device); if you know which devices are not in your system and
disable all of those, probes will be less of a concern. Please note that PCI
devices are not, currently, configurable—since they are configured on the fly,
there is no conflict, and do not need to be re-configured or deleted.

In my case, I disabled all of the mass-storage devices that I did not have,
including the Adaptec 154x driver and the second Western Digital controller.
The Western Digital driver, wdc, controls (E)IDE, ESDI, MFM and RLL hard disk
drives. The probe sequence for one of these controllers takes a considerable
amount of time, so disabling the second one, _wdc1_, speeds up the boot
process measurably.

The visual configuration process is fairly self-explanatory and takes only a few
seconds to go through. However, it is not, in most cases, truly necessary. An
example of when it would be necessary: if my Ethernet card had not been
configured at IRQ 5, I/O port 0x280, memory address 0x0d8000, I would need
to either reconfigure the card or change what the FreeBSD kernel expected. If
you accidently delete a driver, you can reconfigure it by switching to the
“Inactive Drivers” section by pressing tab and pressing enter to re-enable it.

After you've finished the kernel configuration, press Q, answer the question
that appears and watch the system boot. On a slow system, you can watch the



kernel messages being issued and ensure that all of the desired devices have
been found. Or, you can press the scroll-lock key when they begin to scroll, and
when the kernel is done probing, you will be able to scroll the display up and
down using the arrow keys and page up/page down.

You will now be presented with a text menu (in color, if you are on a color CGA
or VGA monitor). (See Figure 1.)

Figure 1. The Initial Install Menu

Read the Documentation

The first item in the menu is “Usage”, which explains how to move through the
menu system and which keys do what. This is a must-read for any first-time
installer. Press enter, and you will be presented with the “HOW TO USE THIS
SYSTEM” screen. (See Figure 2.)

Figure 2. Selecting Item 1 in the initial menu brings up this screen.

The next menu item is “Documentation”, which provides a brief overview of
FreeBSD, the supported hardware, installation guide, etc. These files are
available on the CD-ROM's root directory, as well as in the release's root
directory in the FTP location.

Choosing Your Options

The third menu item is “Options”, and mostly applies to non-CD-ROM installs—
NFS and FTP. In particular, if you need to use an FTP name other than ftp (e.g.,
anonymous or even a non-anonymous account name). (See Figure 3.)

Figure 3. Installation Process Options

The easiest way to get started is to choose the “Novice” installation method (the
fourth item of the main menu). The first thing this does is partition the disk for
you, using a screen-oriented fdisk program. The “Express” method isn't as
verbose with explanations—and is probably the best way to install if you've
done FreeBSD installs before. (See Figure 4.)

Figure 4. Express Install Screen

For simplicity's sake, I chose to use the entire disk for FreeBSD by typing A—it
then asked if I wanted to have a “true partition” entry. This is necessary if the
disk will be used in a mixed-OS, dual boot machine (e.g., both DOS and
FreeBSD). Since the machine in question will only be used as a web server, I

https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f4.jpg


answered no. (See Figure 5.) Note that if you are using BIOS geometry mapping,
this may very well be required. As always, type Q when done.

Figure 5. Disk Geometry Screen

Partitions vs. Slices

FreeBSD can work with DOS-style partitions, and it can use its own partitions as
well. FreeBSD calls the former “slices” in order to avoid confusion, although it
doesn't necessarily succeed. In general, BSD partitions reside inside DOS-style
partitions (aka “slices”). The normal name for a disk is
<device><unit><partition>, e.g., wd0a; the slice is added after the unit, and
before the petition. For example, wd0s1e would be the first slice (starting at 1,
not 0), fifth partition within that slice, of the first IDE drive. FreeBSD can
automatically partition the slice for you; on my 202MB drive, it chose:

/       32MB
swap    41MB
/var    30MB
/usr    98MB

You can choose your own sizes, of course. I chose the defaults which are quite
reasonable. 

After deciding on the layout of the disk, the next step is to choose which type of
system to install. The options range from minimal to complete, with most
people selecting something in between. For this install, the most likely type
would have been “Basic”, which would install the basic FreeBSD system;
however, I also prefer to configure my kernel to edit out unnecessary devices,
so I chose the “kernel developer” package—this is the basic package, with
compiler tools and the kernel sources. When installed, it used up approximately
130MB of disk space.

When selecting the package (by pressing the space bar), you are immediately
asked if you want to install the DES packages. This is desirable, as you can share
password file entries with traditional Unix systems this way. However, the
default FreeBSD password encryption scheme (MD5 checksumming, actually)
appears to be stronger than DES. Note that you are not supposed to install DES
unless you are in the USA or Canada due to export restrictions, although the
packages are included on the CD-ROM.

In addition to the basic DES package (the static and shared libraries), you can
choose to install Kerberos (an authentication suite developed at MIT), as well as
the sources to each. Although I generally use Kerberos, I did not install it on this
machine, as space was getting tight and configuring Kerberos is not easy.

https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f5.jpg


The install program then asks if you want to install the ports collection; this is
fairly small (about 10MB), but since space was so tight I did not install it. There
is more about ports and packages later later.

At this point, you are presented with the “Choose Distributions” menu again; if
you are satisfied with your choices, press return to continue, otherwise, choose
the distribution type you wish and continue.

Installation Media Choices

Figure 6. Media Choice Screen

The next choice is what kind of media to use for the install. (See Figure 6.) I
chose to use the CD-ROM method, as it is faster, easier and more convenient
than the others. However, you can also install via NFS and FTP (and passive FTP
—this is required if you are behind a firewall that has been configured by a
paranoid administrator). For FTP installs, it uses the account name chosen in
the “Options” section mentioned previously. Last, you can also install via an
existing file system (e.g., an MS-DOS file system), floppy or tape. To use tape,
you must have one of the tape drives supported by FreeBSD—mostly SCSI
tapes, but also Wangtek and a couple of others.

If you choose to do an FTP install, you have to select the site to grab the files
from—the default is the “Primary Site”, which is ftp://ftp.freebsd.org (aka http://
wcarchive.cdrom.com/). There are also mirrors around the world.

When doing an FTP or NFS install, you also need to configure the networking
interface. You're presented with all of the networking interfaces that the system
found—any networking cards it recognized, as well as SLIP, PPP and the
parallel-port IP interface (PLIP). Help is available at the “Network interface
information required” menu by pressing f1. One quick note: the SLIP and PLIP
options assume that the connection will be a hard-wired connection—if you
need to connect using a modem, PPP is the only possible method.

After selecting the network interface (e.g., ed0), you will need to tell the install
program the host name and domain name, default router (aka the “gateway”),
name server, IP address and any extra options. Note that the gateway and
name server fields need to be IP addresses, not host names. You will need to
enter this information again, when doing post-install configuration.

If you selected the PPP interface, you will be asked to configure it. This requires
knowing what baud rate to use (it defaults to 115200) and the IP address of the
remote side. By default, it uses the gateway address, if you supplied it; you can
also tell it to use “0”, which will allow it to be negotiated as part of the PPP
connection setup. After you've done all this, you are then told to switch to VTY3

https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/057/2515f6.jpg


(the third virtual console screen), where the PPP program has been started.
From there, you need to connect to the PPP server you are using (e.g., dialing
the modem, entering account and password information, etc.).

After that, all that was necessary was to wait while the system installed. On my
slow 486DX-33, with an IDE drive and a double-speed SCSI CD-ROM drive, it
took 16 minutes to install all of the packages.

System Configuration

The install program then asks if you'd like to configure the network devices and,
if so, which ones. This is identical to what was done if a network installation of
any sort was done. In the case of the install I did, there was only one interface
to configure: ed0. FreeBSD prompts for host and domain names, network
gateway, name server and IP address. The netmask defaulted correctly,
although you can change it if necessary. There is also a box for “Extra
options”—some cards may require link-level options to choose which interface
pair, e.g., BNC or Twisted, to use.

The next questions asked are about, Samba, IP forwarding, anonymous FTP,
and NFS configuration. Of these, the only one I chose to configure was
anonymous FTP, as this is sometimes useful for a web server. If my network
had more (or, for that matter, any) Windows systems, Samba would allow file
and printer sharing. If the machine were going to be my router, I would have
enabled IP forwarding.

The last three system configuration questions are system console configuration
(e.g., screen saver, font, keyboard map, etc.), time zone and mouse. This
particular machine does not have a mouse; if it did, it would be possible to
enable text cutting and pasting.

Installing the Web Server

The last thing to do is install any desired packages. FreeBSD has quite a
considerable set of packages and ports; this is, in fact, one of the most
attractive attributes of FreeBSD, in addition to its high performance.

Ports vs. Packages

Ports and packages are very similar; the only difference is in what is included in
the file. A package is a gzipped tar file containing all of the files needed, along
with some description and checksum files. A port, on the other hand, consists
of patches, and a pointer to the location on the Internet of the main files. Many
ports are built on the local system after applying source patches. Some,



however, are “ports” because they are commercial programs and cannot be
distributed via CD-ROM or Walnut Creek's FTP site.

The only package I chose to install was the Apache package in the WWW
category. This took only a few seconds to install from CD-ROM, and it then went
on to finish system configuration: additional accounts, setting the root
password and registering. (Registering sends e-mail to the FreeBSD project and
is not necessary. It does help the project, though.)

Once all that is done, the installation process is complete, and you can exit to
reboot. When your machine comes back up, your FreeBSD system should now
be on the network.

Post-install Configuration

As mentioned above, I always configure my kernels to trim away any unneeded
devices. This is similar to what was done during the visual configuration
process but is done by compiling the kernel, it results in a smaller kernel,
requiring less memory.

The FreeBSD Handbook describes this process in detail. The Handbook is
available on the FreeBSD web page, at http://www.freebsd.org/ and is also
installed in /usr/share/doc/, in HTML. In simplest terms, you do the following
commands:

cd /sys/i386/conf
cp GENERIC <machine name>
vi <machine name> #edit the file and exit vi
config <machine name>
cd ../../compile/<machine name>
make depend all
cp kernel /kernel
reboot

The complicated part is in the editing of the configuration file. After dealing
with the visual configuration utility, the configuration file should not be all that
complicated. (It is documented in the Handbook.) You can use the dmesg

command to see which devices were found and which were not. By default, the
installation leaves a copy of the generic kernel in /kernel.GENERIC; you can boot
this, or any other kernel, by typing the name of the kernel at the Boot: prompt. 

In addition to removing or configuring devices, system parameters can also be
configured this way. One such parameter, maxusers, controls how much
memory the kernel allocates to certain resources—the maximum number of
processes, open files, and time events are all calculated based on maxusers.
Another parameter that may need to be changed is MAXMEM—due to BIOS
limitations, FreeBSD only recognizes up to 64MB of RAM by default (or 16MB on
some very old systems), and MAXMEM (specified in KB) tells it to use more.



For example, on a machine with 256MB of RAM, which is expected to have a
heavy load, the following lines in the configuration file might be used:

maxusers        100
options         MAXMEM="(256*1024)"   # 256MB

Once again, after editing the appropriate configuration file, run config and then 
make. 

Making the Web Server Useful

The Apache package installs the configuration files into /usr/local/etc/apache,
and the default configuration files have a document root of /usr/local/www/
data. By creating an index.html file in that directory, the web server is now up.

For me, the machine was completely installed, configured and acting as a web
server on my LAN in about two hours. Most of that time was spent waiting for
the kernel to recompile; it took 90 minutes on this machine (it takes about six
and a half minutes on my 133MHz Pentium)—and the system was working as a
web server during that period.

Conclusions

I have installed FreeBSD several times. The process is fairly painless, largely
intuitive and very quick when done from a CD-ROM. My main objection is that it
lacks a help option for many of the dialog boxes or menus; this can make it
difficult to know what to do if you are new to Unix. However, ignoring that, the
install went smoothly and required no knowledge of Apache configuration or
installation on my part. If I hadn't chosen to reconfigure the kernel, I would
have had a fully-functioning web server within about 30 minutes of beginning
installation.

Resources

Sean Fagan has been a BSD contributor for many years. He lives in San Jose
with a psychotic cat who insisted on being mentioned in this article. He can be
reached at sef@kithrup.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/057/2515s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Enterprise Solutions Supplement

Features

LJ Interviews Corel's Michael Cowpland by Marjorie Richardson
A talk with the President of Corel, a man and a company fully
comitted to Linux.

LJ Interviews Netscape's Jim Barksdale by Marjorie Richardson
Netscape's CEO talks about Open Source and Linux and why his
company supports both.

LJ Interviews IBM WebSphere's Paraic Sweeney by Marjorie Richardson
IBM now supports Open Source by shipping products with the
Apache web server.

News & Articles

Linux as POS for Pizza Business by Steve O'Connor
Here's a new use for Linux—selling pizzas—and about time, too.

Linux-Kontor Accountancy Package by Joachim Schaaf
Mr. Schaaf describes the concept and current development stage of
this free program for the commodity market.

Product Review

xxl: A Spreadsheet for Linux by Larry Ayers
The intent of xxl is to produce a graphical spreadsheet which is both
uncomplicated and easy to learn and use.

Departments

From the Editor
Linux and Enterprise: A Winning Combination by Marjorie Richardson

Archive Index Issue Table of Contents 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/057/3152.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3152.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3154.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3154.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3156.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3156.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2909.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/2914.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3217.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/3219.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/057/toc057.html


    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Departments
	Strictly On-line
	Supplement
	DIPC: The Linux Way of Distributed Programming
	Mohsen Sharifi
	Kamran Karimi
	Motivation
	The DIPC Software
	DIPC Clusters
	DIPC Programs
	DIPC's Distributed Shared Memory
	Error Detection in DIPC
	Security in DIPC
	Current Status of DIPC
	Call for Cooperation
	Conclusion

	Transform Methods and Image Compression
	Greg A. Harris
	Darrel Hankerson
	Image Compression and Transforms
	The Cosine Transform and JPEG
	A JPEG Enhancement
	A Wavelet Example
	Conclusion

	LJ Interviews Kent McNall of Apropos
	Marjorie Richardson

	1998 Readers' Choice Awards
	Amy Kukuk
	Favorite Audio Application
	Favorite Backup Utility
	Most Used Linux Book
	Best Browser of 1998
	Most Used Business Application
	Favorite LJ Column
	Primary Communications Board
	Most Used Database
	Best Development Tool
	Favorite Linux Distribution
	Favorite Editor
	Favorite File Manager
	Most Played Linux Game:
	Best Graphics Application
	Favorite Programming Language
	Most Loved Mailer
	Favorite Peripheral
	Best System Vendor
	Favorite Platform:
	Most Used Portable
	Favorite Security System
	Favorite Shell
	Most Loved Special Purpose Tool
	Best UPS
	Favorite Video Tool
	Best Linux Web Page
	Favorite Window Manager
	Most Used X Server

	Editor's Choice Awards
	Marjorie Richardson
	Most Promising Software Newcomers—GNOME and
KDE
	Best Business Solution—Linux Print System at
Cisco
	Most Desired Port—QuarkXPress

	Introduction to LyX
	Ulrich Quill
	Installation
	Running LyX
	More LaTeX Commands and Previewing
	Templates
	Customization
	Summary

	x-automate: Control Your Home with Linux
	Stewart Benedict

	A Short History of Women in Technology
	Thomas Connelly
	Ada Lovelace
	Grace Murray Hopper
	Adele Goldstine
	Betty Holberton
	Conclusion

	The Proper Image for Linux
	Randolph Bentson
	Education
	Experience
	Current Use
	Motivations
	Quality
	Postscript

	Understanding a Context Switching Benchmark
	Randy Appleton
	Understanding the Problem
	The Search Loop
	The Recalc Loop
	Summary

	An Introduction to VRML
	Tuomas Lukka
	The Basics
	Animation and Interaction
	Scripting
	Applications
	Conclusions

	Getting Started with Quake
	Bob Zimbinski
	Necessary Files
	Installation
	Installing From CD-ROM
	Installing the Shareware Version
	Installing from a Pre-existing DOS/Windows
Installation
	Linux Binary Installation
	Sound Considerations
	X11 Quake
	SVGAlib Quake
	GL Quake
	QuakeWorld
	Related Software

	First Canadian National Linux InstallFest
	Dean Staff
	Highlights
	Overview
	Where do we go from here?
	Today Canada, Tomorrow the World!

	VariCAD Version 6.2-0.3
	Bradley Willson
	Knobs, Levers and Switches
	File, Open...
	File, New...
	In Conclusion

	SciTech Display Doctor 1.0
	James Youngman

	PartitionMagic 4.0
	Roderick Smith
	Program Features
	PartitionMagic in Operation
	Recommendations

	Calendar Programs
	Michael Stutz
	Using Calendar
	Keeping Your Dates Separate
	Automating Calendar
	Using cal
	Other Calendar Programs

	Linux as a PACS Server for Nuclear Medicine
	Cheng-Ta Wu

	Caching the Web, Part 1
	David Guerrero
	Multi-Level Web Caching
	What's ICP?
	To cache or not to cache?
	OK, cache, but for how long?

	Linux for Macintosh 68K Port
	Alan Cox
	Getting Started
	Learning MacOS
	Building and Booting Linux
	Paint It Black
	Consoling Yourself
	Filling In the Blanks
	Mapping Ethernet Cards
	Rooting for NFS
	Conclusions

	Creating a Web-based BBS, Part 1
	Reuven M. Lerner
	Designing the BBS
	Creating the Tables
	Common Program Elements
	Creating and Viewing Threads
	Conclusion

	Letters to the Editor
	Various
	Thanks for the On-line Reference
	Future of Linux Followup
	Re: July 1998 Issue
	Office Suite Review
	October STP Column
	Redirecting to Console 9
	Intel and Red Hat
	Review of Applixware vs. StarOffice

	1998 Atlanta Linux Showcase
	Norman M. Jacobowitz

	New Products
	Amy Kukuk
	FootPrints v 2.2
	Linux Office Suite 99
	Etherminal J
	DupliDisk
	CommuniGate Pro Server
	WebSENSE
	Parallel Computing Toolkit
	Correction

	Best of Technical Support
	Various
	umask Trouble
	IDE/ATAPI Support?
	Switching Hard Drives
	Mounting a Zip Disk
	Sharing Directories
	Shutting Down
	Updating Web Site

	WWWsmith: Installation and Configuration of FreeBSD
	Sean Eric Fagan
	Hardware Requirements
	Preparing to Install
	Beginning Installation
	Read the Documentation
	Choosing Your Options
	Partitions vs. Slices
	Installation Media Choices
	System Configuration
	Installing the Web Server
	Ports vs. Packages
	Post-install Configuration
	Making the Web Server Useful
	Conclusions

	Enterprise Solutions Supplement
	Features
	News & Articles
	Product Review
	Departments


